K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

\(ĐKXĐ:x\ne\pm1\)

Ta có : \(\frac{x+1}{x^2+x+1}-\frac{x-1}{x^2-x+1}=\frac{2\left(x+2\right)^2}{x^6-1}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2-x+1\right)}=\frac{2\left(x+2\right)^2}{\left(x^3+1\right)\left(x^3-1\right)}\)

\(\Leftrightarrow\frac{x^3+1-x^3+1}{\left(x^2+x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x+2\right)^2}{\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{2}{\left(x^2+x+1\right)\left(x^2-x+1\right)}-\frac{2\left(x+2\right)^2}{\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{2\left(x+1\right)\left(x-1\right)-2\left(x+2\right)^2}{\left(x+1\right)\left(x^2-x+1\right)\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow2\left(x^2-1\right)-2\left(x^2+4x+4\right)=0\)

\(\Leftrightarrow2x^2-2-2x^2-8x-8=0\)

\(\Leftrightarrow-8x-10=0\)

\(\Leftrightarrow x=-\frac{5}{4}\)

Vậy \(x=-\frac{5}{4}\) là nghiệm của phương trình.

2 tháng 3 2021

Bài dài quá, lần sau chia nhỏ câu hỏi nhé!!!!!

12 tháng 9 2021

đúng vậy

29 tháng 6 2016

a)(x-1)(x2+x+1)-x(x+2)(x-2)=5

=>x3-1-4x-x3=5

=>x3-x3+4x-1=5

=>4x-1=5

=>4x=6

=>x=3/2

b)(x-2)^3-(x-3)(x^2+3x+9)+6(x+1)^2=15

=>x3-6x2+12x-8-x3+27+6x2+12x+6=15

=>(x3-x3)-(-6x2+6x2)+(12x+12x)-8+27+6=15

=>24x+25=15

=>24x=-10

=>x=-5/12

c)6(x+1)^2-2(x+1)^3+2(x-1)(x^2+x+1)=1

=>6x2+12x+6-2x3-6x2-6x-2+2x3-2=1

=>(6x2-6x2)+(12x-6x)-(-2x3+2x3)+6-2-2=1

=>6x+2=1

=>6x=-1

=>x=-1/6

18 tháng 3 2021

x2-4x+7 = 0 ⇔ x2 -4x + 4 + 3 = 0 

⇔ (x-2)2+3=0 ⇔ (x-2)2=-3 (vô lí)

Vậy pt vô nghiệm

*Chứng minh phương trình \(x^2-4x+7=0\) vô nghiệm

Ta có: \(x^2-4x+7=0\)

\(\Leftrightarrow x^2-4x+4+3=0\)

\(\Leftrightarrow\left(x-2\right)^2+3=0\)

mà \(\left(x-2\right)^2+3\ge3>0\forall x\)

nên \(x\in\varnothing\)(đpcm)

AH
Akai Haruma
Giáo viên
2 tháng 3 2021

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn. 

4 tháng 3 2021

x^2+2x-3/3+2x/4=x^2/3

d: ĐKXĐ: \(x\notin\left\{2;-3\right\}\)

\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{5}{6-x^2-x}\)

=>\(\dfrac{1}{x-2}-\dfrac{6}{x+3}=\dfrac{-5}{\left(x+3\right)\left(x-2\right)}\)

=>\(x+3-6\left(x-2\right)=-5\)

=>x+3-6x+12=-5

=>-5x+15=-5

=>-5x=-20

=>x=4(nhận)

e: ĐKXĐ: x<>-2

\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{x^3+8}=\dfrac{5}{x^2-2x+4}\)

=>\(\dfrac{2}{x+2}-\dfrac{2x^2+16}{\left(x+2\right)\left(x^2-2x+4\right)}=\dfrac{5}{x^2-2x+4}\)

=>\(2\left(x^2-2x+4\right)-2x^2-16=5\left(x+2\right)\)

=>\(2x^2-4x+8-2x^2-16=5x+10\)

=>5x+10=-4x-8

=>9x=-18

=>x=-2(loại)

f: ĐKXĐ: \(x\in\left\{1;-1\right\}\)

\(\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{x^6-1}\)

\(\Leftrightarrow\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>\(\dfrac{\left(x+1\right)\left(x^2-x+1\right)\left(x^2-1\right)-\left(x-1\right)\left(x^2+x+1\right)\left(x^2-1\right)}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}=\dfrac{2\left(x+2\right)^2}{\left(x-1\right)\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)}\)

=>\(\left(x^3+1\right)\left(x^2-1\right)-\left(x^3-1\right)\left(x^2-1\right)=2\left(x^2+4x+4\right)\)

=>\(\left(x^2-1\right)\cdot\left(x^3+1-x^3+1\right)=2\left(x^2+4x+4\right)\)

=>\(2x^2+8x+8=\left(x^2-1\right)\cdot2=2x^2-2\)

=>8x=-10

=>x=-5/4(nhận)

8 tháng 7 2018

1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)

ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)

<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)

<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)

<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)

<=> \(\frac{3x+10}{x^2+2x-3}=0\)

<=> \(3x+10=0\)

<=> \(x=-\frac{10}{3}\)

\(\Leftrightarrow\dfrac{x+1}{x^2+x+1}-\dfrac{x-1}{x^2-x+1}=\dfrac{2\left(x+2\right)^2}{\left(x+1\right)\left(x-1\right)\left(x^2-x+1\right)\left(x^2+x+1\right)}\)

Suy ra: \(\left(x+1\right)^2\cdot\left(x^2-x+1\right)-\left(x-1\right)^2\cdot\left(x^2+x+1\right)=2\left(x+2\right)^2\)

\(\Leftrightarrow\left(x^2+2x+1\right)\left(x^2-x+1\right)-\left(x^2-2x+1\right)\left(x^2+x+1\right)=2\left(x+2\right)^2\)

\(\Leftrightarrow x^4+x^3+x+1-x^4+x^3+x-1=2\left(x+2\right)^2\)

\(\Leftrightarrow2x^3+2x-2\left(x+2\right)^2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)-2\left(x+2\right)^2=0\)

 

1) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=\dfrac{4}{x^2-1}\)

\(\Leftrightarrow\dfrac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{\left(x-1\right)\left(x+1\right)}\)

Suy ra: \(x^2+2x+1-\left(x^2-2x+1\right)=4\)

\(\Leftrightarrow x^2+2x+1-x^2+2x-1=4\)

\(\Leftrightarrow4x=4\)

hay x=1(loại)

Vậy: \(S=\varnothing\)

2) ĐKXĐ: \(x\notin\left\{2;-2\right\}\)

Ta có: \(\dfrac{x+2}{x-2}+\dfrac{x}{x+2}=2\)

\(\Leftrightarrow\dfrac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2\left(x^2-4\right)}{\left(x-2\right)\left(x+2\right)}\)

Suy ra: \(x^2+4x+4+x^2-2x=2x^2-8\)

\(\Leftrightarrow2x^2+2x+4-2x^2-8=0\)

\(\Leftrightarrow2x-4=0\)

\(\Leftrightarrow2x=4\)

hay x=2(loại)

Vậy: \(S=\varnothing\)