Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x-2)3+6(x+1)2-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0
\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0
\(\Rightarrow\)24x+10=0
\(\Rightarrow\)24x=-10
\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)
b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2
\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2
\(\Rightarrow\)x2-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2
\(\Rightarrow\)3x2-18x-22=3x2+2x+17
\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0
\(\Rightarrow\)-20x-39=0
\(\Rightarrow\)-20x=39
\(\Rightarrow\)x=\(-\dfrac{39}{20}\)
\(a,5\left(3x+5\right)-4\left(2x-3\right)=5x+8\left(2x+12\right)+1\)
\(\Rightarrow5\left(3x+5\right)-4\left(2x-3\right)-5x-8\left(2x+12\right)-1=0\)
\(\Rightarrow15x+25-8x+12-5x-16x-96-1=0\)
\(\Rightarrow-14x-60=0\)
\(\Rightarrow-14x=60\) \(\Rightarrow x=-\frac{60}{14}=\frac{-30}{7}\)
\(b,\left(2x+3\right)\left(x-4\right)-\left(3x-5\right)\left(x-4\right)=\left(5-x\right)\left(x-2\right)\)
\(\Rightarrow2x^2+3x-8x-12-3x^2+5x+12x-20=5x-x^2-10+2x\)
\(\Rightarrow-x^2+12x-32=7x-x^2-10\)
\(\Rightarrow-x^2+12x-32-7x+x^2+10=0\)
\(\Rightarrow5x-22=0\)
\(\Rightarrow5x=22\Rightarrow x=\frac{22}{5}\)
a) 5(3x+5)-4(2x-3) = 5x+8(2x+12)+1
15x + 25 - 8x + 12 = 5x + 16x + 96 + 1
15x - 8x - 5x - 16x = 96 + 1 - 25 - 12
-14x = 60
x = \(\frac{60}{-14}\)
x = \(-\frac{30}{7}\)
b) (2x+3)(x-4)-(3x-5)(x-4) = (5-x).(x-2)
(x - 4)(2x + 3 - 3x +5) = 5x - 10 - x2 + 2x
(x - 4)[(2x - 3x) + (3 + 5)] = 5x - 10 - x2 + 2x
(x - 4)(-x + 8) = 5x - 10 - x2 + 2x
-x2 + 8x + 4x - 32 = 5x - 10 - x2 + 2x
(-x2 + x2) + (8x + 4x - 5x - 2x) = -10 + 32
5x = 22
x = \(\frac{22}{5}\)
`a,x(x-1)-(x+2)^2=1`
`<=>x^2-x-x^2-4x-4=1`
`<=>-5x=5`
`<=>x=-1`
`b,(x+5)(x-3)-(x-2)^2=-1`
`<=>x^2+2x-15-x^2+4x-4+1=0`
`<=>6x-18=0`
`<=>x-3=0`
`<=>x=3`
`c,x(2x-4)-(x-2)(2x+3)=0`
`<=>2x(x-2)-(x-2)(2x+3)=0`
`<=>(x-2)(2x-2x-3)=0`
`<=>-3(x-2)=0`
`<=>x-2=0`
`<=>x=2`
`d,x(3x+2)+(x+1)^2-(2x-5)(2x+5)=-12`
`<=>3x^2+2x+x^2+2x+1-4x^2+25=-12`
`<=>4x+26=-12`
`<=>4x=-38`
`<=>x=-19/2`
Câu 9:
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=-1\end{matrix}\right.\)
\(9,\Leftrightarrow x^2\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\\ 11,\Leftrightarrow x^2+5x-x-5=0\\ \Leftrightarrow\left(x+5\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\\ 12,\Leftrightarrow\left(x+1\right)^2-36=0\\ \Leftrightarrow\left(x+7\right)\left(x-5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-7\\x=5\end{matrix}\right.\\ 13,\Leftrightarrow x^3-25x-x^3-8=17\\ \Leftrightarrow-25x=25\Leftrightarrow x=-1\\ 14,\Leftrightarrow x\left(2x^2+8x-3x-12\right)=0\\ \Leftrightarrow x\left(x+4\right)\left(2x-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=\dfrac{3}{2}\end{matrix}\right.\)
b: \(\Leftrightarrow\dfrac{-3x^2+36x+12}{3\left(x+4\right)\left(x-1\right)}=\dfrac{36\left(x-1\right)}{3\left(x+4\right)\left(x-1\right)}+\dfrac{12\left(x+4\right)}{3\left(x-1\right)\left(x+4\right)}\)
\(\Leftrightarrow-3x^2+36x+12=36x-36+12x+48\)
\(\Leftrightarrow-3x^2+36x+12-48x-12=0\)
\(\Leftrightarrow3x\left(x+4\right)=0\)
=>x=0(nhận) hoặc x=-4(loại)
1, \(45+x^3-5x^2-9x=9\left(5-x\right)+x^2\left(x-5\right)\)
\(=\left(9-x^2\right)\left(x-5\right)=\left(3-x\right)\left(x+3\right)\left(x-5\right)\)
3, \(x^4-5x^2+4\)
Đặt \(x^2=t\left(t\ge0\right)\)ta có :
\(t^2-5t+4=t^2-t-4t+4=t\left(t-1\right)-4\left(t-1\right)\)
\(=\left(t-4\right)\left(t-1\right)=\left(x^2-4\right)\left(x^2-1\right)=\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)\)
`Answer:`
1. `45+x^3-5x^2-9x`
`=x^3+3x^2-8x^2-24x+15x+45x`
`=x^2 .(x+3)-8x.(x+3)+15.(x+3)`
`=(x+3).(x^2-8x+15)`
`=(x+3).(x^2-5x-3x+15)`
`=(x-3).(x-5).(x-3)`
2. `x^4-2x^3-2x^2-2x-3`
`=x^4+x^3-3x^3+x^2+x-3x-3`
`=x^3 .(x+1)-3x^2 .(x+1)+x.(x+1)-3.(x+1)`
`=(x+1).(x^3-3x^2+x-3)`
`=(x+1).[x^3 .(x-3).(x-3)]`
`=(x+1).(x-3).(x^2+1)`
3. `x^4-5x^2+4`
`=x^4-x^2-4x^2+4`
`=x^2 .(x^2-1)-4.(x^2-1)`
`=(x^2-1).(x^2-4)`
`=(x-1).(x+1).(x-2).(x+2)`
4. `x^4+64`
`=x^4+16x^2+64-16x^2`
`=(x^2+8)^2-16x^2`
`=(x^2+8-4x).(x^2+8+4x)`
5. `x^5+x^4+1`
`=x^5+x^4+x^3-x^3+1`
`=x^3 .(x^2+x+1)-(x^3-1)`
`=x^3 .(x^2+x+1)-(x-1).(x^2+x+1)`
`=(x^2+x+1).(x^3-x+1)`
6. `(x^2+2x).(x^2+2x+4)+3`
`=(x^2+2x)^2+4.(x^2+2x)+3`
`=(x^2+2x)^2+x^2+2x+3.(x^2+2x)+3`
`=(x^2+2x+1).(x^2+2x)+3.(x^2+2x+1)`
`=(x^2+2x+1).(x^2+2x+3)`
`=(x+1)^2 .(x^2+2x+3)`
7. `(x^3+4x+8)^2+3x.(x^2+4x+8)+2x^2`
`=x^6+8x^4+16x^3+16x^2+64x+64+3x^3+12x^2+24x+2x^2`
`=x^6+8x^4+19x^3+30x^2+88x+64`
8. `x^3 .(x^2-7)^2-36x`
`=x[x^2.(x^2-7)^2-36]`
`=x[(x^3-7x)^2-6^2]`
`=x.(x^3-7x-6).(x^3-7x+6)`
`=x.(x^3-6x-x-6).(x^3-x-6x+6)`
`=x.[x.(x^2-1)-6.(x+1)].[x.(x^2-1)-6.(x-1)]`
`=x.(x+1).[x.(x-1)-6].(x-1).[x.(x+1)-6]`
`=x.(x+1).(x-1).(x^2-3x+2x-6).(x^2+3x-2x-6)`
`=x.(x+1).(x-1).[x.(x-3)+2.(x-3)].[x.(x+3)-2.(x+3)]`
`=x.(x+1)(x-1).(x-2).(x+2).(x-3).(x+3)`
9. `x^5+x+1`
`=x^5-x^2+x^2+x+1`
`=x^2 .(x^3-1)+(x^2+x+1)`
`=x^2 .(x-1).(x^2+x+1)+(x^2+x+1)`
`=(x^2+x+1).(x^3-x^2+1)`
10. `x^8+x^4+1`
`=[(x^4)^2+2x^4+1]-x^4`
`=(x^4+1)^2-(x^2)^2`
`=(x^4-x^2+1).(x^4+x^2+1)`
`=[(x^4+2x^2+1)-x^2].(x^4-x^2+1)`
`=[(x^2+1)^2-x^2].(x^4-x^2+1)`
`=(x^2-x+1).(x^2+x+1).(x^4-x^2+1)
11. ` x^5-x^4-x^3-x^2-x-2`
`=x^5-2x^4+x^4-2x^3+x^3-2x^2+x^2-2x+x-2`
`=x^4 .(x-2)+x^3 ,(x-2)+x^2 .(x-2)+x.(x-2)+(x-2)`
`=(x-2).(x^4+x^3+x^2+x+1)`
12. `x^9-x^7-x^6-x^5+x^4+x^3+x^2-1`
`=(x^9-x^7)-(x^6-x^4)-(x^5-x^3)+(x^2-1)`
`=x^7 .(x^2-1)-x^4 .(x^2-1)-x^3 .(x^2-1)+(x^2-1)`
`=(x^2-1).(x^7-x^4-x^3+1)`
`=(x-1)(x+1)(x^3-1)(x^4-1)`
`=(x-1)(x+1)(x^2+x+1)(x-1)(x^2-1)(x^2+1)`
`=(x-1)^2 .(x+1)(x^2+x+1)(x-1)(x+1)(x^2+1)`
`=(x-1)^3 .(x+1)^2 .(x^2+x+1)(x^2+1)`
13. `(x^2-x)^2-12(x^2-x)+24`
`=[ (x^2-x)^2-2.6(x^2-x)+6^2]-12`
`=(x^2-x+6)^2-12`
`=(x^2-x+6-\sqrt{12})(x^2-x+6+\sqrt{12})`
\(a,\) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+6\)
\(< =>20x-5x^2+5x^2-12-x-6=0\)
\(< =>19x-18=0\)
\(< =>x=\dfrac{18}{19}\)
\(b,\left(2x-7\right)\left(5+4x\right)-8\left(x^2-4x+5\right)=-30\)
\(< =>10x+8x^2-35-28x-8x^2+24x-40+30=0\)
\(< =>6x-45=0< =>x=\dfrac{45}{6}=7,5\)
a) \(5x\left(4-x\right)+\left(5x^2-12\right)=x+\Rightarrow6\\ \Leftrightarrow20x-5x^2+5x^2-12=x+6\\ \Leftrightarrow20x-12=x+6\\\Rightarrow20x-x=6+12\\ \Rightarrow19x=18\\ \Rightarrow x=\dfrac{18}{19}\)
b) \(\left(2x-7\right)\left(5+4x\right)-8\left(x^2-3x+5\right)=-30\\ \Rightarrow10x+8x^2-35-28x-8x^2+24x-40=-30\\ \Rightarrow6x-75=-30\\ \Rightarrow6x=45\\ \Rightarrow x=\dfrac{15}{2}\)
(x-4)(x+4)^2 + x(x+5)(5-x) = 12
=>( x^2 - 16 )( x+4) + x( 25 - x^2) = 12
=> x^3 + 4x^2 - 16x - 64 + 25x - x^3 - 12 = 0
=> 4x^2 + 9x - 76 = 0
=> x = \(\frac{-9\pm\sqrt{1297}}{8}\)