K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2018

1) \(\dfrac{120\left(x-10\right)}{x\left(x-10\right)}-\dfrac{120x}{x\left(x-10\right)}=1\)

=> \(\dfrac{120x-1200-120x}{x\left(x-10\right)}=1\)

=> x(x-10)=-1200

=> x2-10x+1200=0

=> (x2-10x+25)+1175=0

=> (x-5)2+1175>0

=> pt vo nghiem

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Tất cả những bài này đều có hướng giải y chang nhau, nên mình hướng dẫn mẫu 1 bài, các bài khác bạn triển khai tương tự

4. \(\left\{\begin{matrix} 2x-y=5\\ -x+y=-2\end{matrix}\right.\)

Từ PT(1) ta có: $y=2x-5$ (biểu diễn $y$ theo $x$). Thay vào PT(2):

$-x+(2x-5)=-2$

$\Leftrightarrow x-5=-2$

$\Leftrightarrow x=3$

Khi đó: $y=2x-5=2.3-5=1$

Vậy $(x,y)=(3,1)$

4 tháng 2 2021

undefined

22 tháng 8 2019

\(a)DK:z\ne1\)

\(\left\{{}\begin{matrix}\frac{4}{z-1}+2x=7\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\frac{2}{z-1}+x=\frac{7}{2}=3,5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-5y=-5\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-2y=-8\\5x-3y=3\\\frac{2}{z-1}+y=4,5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=4\\5x=15\\\frac{2}{z-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\\z=5\end{matrix}\right.\left(T/m\right)\)

Vậy ...

\(b)DK:\left\{{}\begin{matrix}x,y,z\ne0\\x,y,z>0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+\frac{1}{y}=2\\y+\frac{1}{z}=2\\z+\frac{1}{x}=2\end{matrix}\right.\)

\(\Leftrightarrow x+\frac{1}{x}+y+\frac{1}{y}+z+\frac{1}{z}=6\)

\(\Leftrightarrow\left(x-2.\sqrt{x}.\frac{1}{\sqrt{x}}+\frac{1}{x}\right)+\left(y-2.\sqrt{y}.\frac{1}{\sqrt{y}}+\frac{1}{y}\right)+\left(z-2\sqrt{z}.\frac{1}{\sqrt{z}}+\frac{1}{z}\right)+2+2+2=6\)

\(\Leftrightarrow\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2+\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2+\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)^2=0\)

\(\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)^2;\left(\sqrt{y}-\frac{1}{\sqrt{y}}\right)^2;\left(\sqrt{z}-\frac{1}{\sqrt{z}}\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x}=\frac{1}{\sqrt{x}}\\\sqrt{y}=\frac{1}{\sqrt{y}}\\\sqrt{z}=\frac{1}{\sqrt{z}}\end{matrix}\right.\)

\(\Leftrightarrow x=y=z=1\left(T/m\right)\)

Vậy ...

2 tháng 6 2017

\(a;0,12\cdot400=12\cdot4=48\)

\(b;4,7\cdot5,5-4,7\cdot4,5\)

\(=4,7\cdot\left(5,5-4,5\right)=4,7\cdot1=4,7\)

2 tháng 6 2017

A = 48

B = 4,7

25 tháng 7 2017

Đúng thì làm vậy.

Ta có:

\(\sqrt[3]{x-y}=\sqrt{x-y}\)

\(\Leftrightarrow\sqrt[3]{x-y}\left(1-\sqrt[6]{x-y}\right)=0\)

Dễ thấy x = y không phải là nghiệm

\(\Rightarrow1=\sqrt[6]{x-y}\)

\(\Leftrightarrow1=x-y\)

\(\Leftrightarrow x=1+y\)

Thế vô PT còn lại ta được

\(\sqrt[3]{2y+1}=\sqrt{2y-3}\)

\(\Leftrightarrow\left(2y+1\right)^2=\left(2y-3\right)^3\)

\(\Leftrightarrow8y^3-40y^2+50y-28=0\)

\(\Leftrightarrow2\left(2y-7\right)\left(2y^2-3y+2\right)=0\)

\(\Leftrightarrow y=\frac{7}{2}\)

\(\Rightarrow x=\frac{9}{2}\)

25 tháng 7 2017

Xem lại đề nhé

16 tháng 6 2017

Hệ hai phương trình bậc nhất hai ẩn

Hệ hai phương trình bậc nhất hai ẩn

26 tháng 6 2019

Bài 3:

a) \(PT\Leftrightarrow\sqrt{2x-3}=2\sqrt{x-1}\left(x\ge\frac{3}{2}\right)\)

\(\Leftrightarrow2x-3=4\left(x-1\right)\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\left(L\right)\)

PT vô nghiệm

b) \(PT\Leftrightarrow\left(x-1\right)=\sqrt{\left(x-1\right)^2}\left(x\ge1\right)\)

\(\Leftrightarrow x-1=\left|x-1\right|\). Do \(x\ge1\Rightarrow\left|x-1\right|=x-1\)

Suy ra PT <=> x - 1 = x -1

Vậy phương trình đúng với mọi nghiệm thõa mãn đk \(x\ge1\)

26 tháng 6 2019

tthcâubsai