K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
31 tháng 12 2020

Bạn viết đề cẩn thận bằng công thức toán thì sẽ tăng khả năng nhận được sự giúp đỡ hơn. Viết như thế này nhìn rối mắt cực. 

5 tháng 10 2021

\(A=5x^2-3x-x^3+x^2+x^3-62x-10+3x\\ A=6x^2-62x-10\\ B=x^3+x^2+x-x^3-x^2-x+5=5\\ C=3x^2y-15xy^2+15xy^2-10y^3+10y^2-3x^2y-4=-4\)

b: Ta có: \(B=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)

\(=x^3+x^2+x-x^3-x^2-x+5\)

=5

14 tháng 12 2022

a: =x(x^2-6x+9)

=x(x-3)^2

b: =(2x-5y-7y)(2x-5y+7y)

=(2x-12y)(2x+2y)

=4(x-6y)(x+y)

c: =x^2-xy-2xy+2y^2

=x(x-y)-2y(x-y)

=(x-y)(x-2y)

13 tháng 12 2021

\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)

\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

21 tháng 8 2016

x2 + 2y+ 3xy +3x + 5y = 15 (1)

Để đưa (1) về dạng tích, ta nhóm Pt theo biến x và xem y là tham số:

x2+3xy(y+1)+2y2+5y+m

=15+m (2)

Ta cần chọn m sao cho VT có \(\Delta\) là SCP

Ta có: 

\(\Delta=9\left(y+1\right)^2-4\left(2y^2+5y+m\right)=y^2-2y+9-4m\)

Chọn m=2 ta có: \(\Delta=\left(y-1\right)^2\)

Suy ra x1=-y-2; x2=-2y-1

Khi đó (2) trở thành

(x+y+2)(x+2y+1)=17.Giải các hệ

\(\begin{cases}x+y+2=17\\x+2y+1=1\end{cases}\);\(\begin{cases}x+y+2=1\\x+2y+1=17\end{cases}\);\(\begin{cases}x+y+2=-1\\x+2y+1=-17\end{cases}\);

\(\begin{cases}x+y+2=-17\\x+2y+1=-1\end{cases}\)

Ta tìm đc các nghiệm (x;y)=(12;-15),(-36;17),(-18;17),(30;-15)

 

 

22 tháng 8 2017

SCP là j

26 tháng 8 2018

\(P=-3xy\left(-x+5y\right)+5y^2\left(3x-2y\right)+2\left(5y^3-\dfrac{3}{2}x^2y+7\right)\\ =3x^2y-15xy^2+15xy^2-10y^3+10y^3-3x^2y+14\\ =14\)

=> Giá trị của biểu thức P không phụ thuộc vào giá trị của biến

5 tháng 8 2015

 x² + 5y² + 2y - 4xy - 3 = 0 
<=> x² - 4xy + 4y² + y² + 2y + 1 - 4 = 0 
<=> (x - 2y)² + (y + 1)² = 4 (*) 

VÌ (x -2y)², (y+1)² là các số chính phương nên (*) chỉ có các khã năng: 
* KN1: 
{(x-2y)² = 0 
{(y+1)² = 4 
<=> x = 2y và y+1 = ±2 => x = 2y và y = -3 (do ta chọn y nhỏ nhất nên loại y = 1) 
=> x = -6 và y = -3 

* KN2: 
{(x-2y)² = 4 
{y+1)² = 0 
<=> x - 2y = ±2 và y = -1 > -3 tức là ta chọn nghiêm y = -3 mới nhỏ nhất 

Vậy cặp (x, y) cần tìm là: x = -6; y = -3 

7 tháng 4 2019

PT đã cho ghép nhóm vào được :

\(\left(x^2+3xy+\frac{9}{4}y^2\right)+2\left(x+\frac{3}{2}y\right).\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\left(y^2-2y+1\right)=17\)

\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}\right)^2-\frac{1}{4}\left(y-1\right)^2=17\)

\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}-\frac{1}{2}y+\frac{1}{2}\right)\left(x+\frac{3}{2}y+\frac{3}{2}+\frac{1}{2}y-\frac{1}{2}\right)=17\)

\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17\)

Sau đấy lập bảng xét ước

3 tháng 4 2019

photomath :)))