Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn viết đề cẩn thận bằng công thức toán thì sẽ tăng khả năng nhận được sự giúp đỡ hơn. Viết như thế này nhìn rối mắt cực.
\(A=5x^2-3x-x^3+x^2+x^3-62x-10+3x\\ A=6x^2-62x-10\\ B=x^3+x^2+x-x^3-x^2-x+5=5\\ C=3x^2y-15xy^2+15xy^2-10y^3+10y^2-3x^2y-4=-4\)
b: Ta có: \(B=x\left(x^2+x+1\right)-x^2\left(x+1\right)-x+5\)
\(=x^3+x^2+x-x^3-x^2-x+5\)
=5
a: =x(x^2-6x+9)
=x(x-3)^2
b: =(2x-5y-7y)(2x-5y+7y)
=(2x-12y)(2x+2y)
=4(x-6y)(x+y)
c: =x^2-xy-2xy+2y^2
=x(x-y)-2y(x-y)
=(x-y)(x-2y)
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
x2 + 2y2 + 3xy +3x + 5y = 15 (1)
Để đưa (1) về dạng tích, ta nhóm Pt theo biến x và xem y là tham số:
x2+3xy(y+1)+2y2+5y+m
=15+m (2)
Ta cần chọn m sao cho VT có \(\Delta\) là SCP
Ta có:
\(\Delta=9\left(y+1\right)^2-4\left(2y^2+5y+m\right)=y^2-2y+9-4m\)
Chọn m=2 ta có: \(\Delta=\left(y-1\right)^2\)
Suy ra x1=-y-2; x2=-2y-1
Khi đó (2) trở thành
(x+y+2)(x+2y+1)=17.Giải các hệ
\(\begin{cases}x+y+2=17\\x+2y+1=1\end{cases}\);\(\begin{cases}x+y+2=1\\x+2y+1=17\end{cases}\);\(\begin{cases}x+y+2=-1\\x+2y+1=-17\end{cases}\);
\(\begin{cases}x+y+2=-17\\x+2y+1=-1\end{cases}\)
Ta tìm đc các nghiệm (x;y)=(12;-15),(-36;17),(-18;17),(30;-15)
\(P=-3xy\left(-x+5y\right)+5y^2\left(3x-2y\right)+2\left(5y^3-\dfrac{3}{2}x^2y+7\right)\\ =3x^2y-15xy^2+15xy^2-10y^3+10y^3-3x^2y+14\\ =14\)
=> Giá trị của biểu thức P không phụ thuộc vào giá trị của biến
x² + 5y² + 2y - 4xy - 3 = 0
<=> x² - 4xy + 4y² + y² + 2y + 1 - 4 = 0
<=> (x - 2y)² + (y + 1)² = 4 (*)
VÌ (x -2y)², (y+1)² là các số chính phương nên (*) chỉ có các khã năng:
* KN1:
{(x-2y)² = 0
{(y+1)² = 4
<=> x = 2y và y+1 = ±2 => x = 2y và y = -3 (do ta chọn y nhỏ nhất nên loại y = 1)
=> x = -6 và y = -3
* KN2:
{(x-2y)² = 4
{y+1)² = 0
<=> x - 2y = ±2 và y = -1 > -3 tức là ta chọn nghiêm y = -3 mới nhỏ nhất
Vậy cặp (x, y) cần tìm là: x = -6; y = -3
PT đã cho ghép nhóm vào được :
\(\left(x^2+3xy+\frac{9}{4}y^2\right)+2\left(x+\frac{3}{2}y\right).\frac{3}{2}+\frac{9}{4}-\frac{1}{4}\left(y^2-2y+1\right)=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}\right)^2-\frac{1}{4}\left(y-1\right)^2=17\)
\(\Leftrightarrow\left(x+\frac{3}{2}y+\frac{3}{2}-\frac{1}{2}y+\frac{1}{2}\right)\left(x+\frac{3}{2}y+\frac{3}{2}+\frac{1}{2}y-\frac{1}{2}\right)=17\)
\(\Leftrightarrow\left(x+y+2\right)\left(x+2y+1\right)=17\)
Sau đấy lập bảng xét ước