K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2020

\(\left(x^n\right)^{^2}=x^6\)(\(x\ne0;1\))

\(\Leftrightarrow x^{2n}=x^6\)

\(\Leftrightarrow2n=6\)

\(\Leftrightarrow n=3\)

12 tháng 3 2020

(xn)2=x6

x2n=26

 2n=6

   n=6:2

   n=3

Vậy n=3

9 tháng 10 2020

2) Ta có: \(\hept{\begin{cases}\left|x+1\right|\ge0\\\left|x+2\right|\ge0\\\left|x+3\right|\ge0\end{cases}}\left(\forall x\right)\Rightarrow\left|x+1\right|+\left|x+2\right|+\left|x+3\right|\ge0\)

\(\Rightarrow2x\ge0\Rightarrow x\ge0\)

Phá ngoặc ta được: \(x+1+x+2+x+3=2x\)

\(\Leftrightarrow3x+6=2x\)

\(\Rightarrow x=6\)

Vậy x = 6

9 tháng 10 2020

Đoạn cuối xin lỗi cho sửa lại:

\(3x+6=2x\)

\(\Leftrightarrow3x-2x=-6\)

\(\Rightarrow x=-6\)

Mà \(x\ge0\)

=> PT vô nghiệm

 Vì \(\left(x^2-1\right)\left(x^2-16\right)< 0\)

Lại có \(\left(x^2-16\right)< \left(x^2-1\right)\)nên để \(\left(x^2-1\right)\left(x^2-16\right)< 0\)cần:

\(\hept{\begin{cases}x^2-1>0\\x^2-16< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2>1\\x^2< 16\end{cases}}\)

\(\Leftrightarrow1< x^2< 16\)

\(x\in Z\) \(\Rightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)thì \(\left(x^2-1\right)\left(x^2-16\right)< 0\)

27 tháng 9 2017

Để làm đc câu thứ nhất thì bạn cần nhớ : I A I = I B I \(\Rightarrow\) A = B hoặc A = -B

Còn câu thứ hai dễ mà. Bạn suy nghĩ kĩ xem có nghĩ ra gì ko. Nếu ko thì bạn hỏi mình. mình giảng cho nhé.

22 tháng 7 2020

Bài làm:

a) \(2\left|x-1\right|-8=0\)

\(\Leftrightarrow2\left|x-1\right|=8\)

\(\Leftrightarrow\left|x-1\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}\)

b) \(-\left|2x+3\right|+3=6\)

\(\Leftrightarrow\left|2x+3\right|=-3\)

Mà \(\left|2x+3\right|\ge0>-3\left(\forall x\right)\)

=> Mâu thuẫn

=> Không tồn tại x thỏa mãn

22 tháng 7 2020

a) Ta có 2|x - 1| - 8 = 0

=> 2|x - 1| = 8

=> |x - 1| = 4

=> \(\orbr{\begin{cases}x-1=4\\x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-3\end{cases}}}\)

b) Ta có : -|2x + 3| + 3 = 6

=> -|2x + 3| = 3

=> |2x + 3| = -3

Vì \(\left|2x+3\right|\ge0\forall x\)

mà -3 < 0

=> x \(\in\varnothing\)

3 tháng 7 2019

\(\left|3-2x\right|+\left|4y+5\right|=0\)

Do \(\left|3-2x\right|\ge0;\left|4y+5\right|\ge0\Rightarrow\left|3-2x\right|+\left|4y+5\right|\ge0\)

Dấu "=" xảy ra khi \(x=\frac{2}{3};y=-\frac{5}{4}\)

Mấy bài khác tương tự

3 tháng 7 2019

|x - y| + |y + 9/25| \(\le\)0

Ta có: |x - y| \(\ge\)\(\forall\)x,y

           |y + 9/25| \(\ge\) 0 \(\forall\)y

=> |x - y| + |y + 9/25|  \(\ge\)\(\forall\)x, y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}x-y=0\\y+\frac{9}{25}=0\end{cases}}\) => \(x=y=-\frac{9}{25}\)

Vậy ...

(x  + y)2012 + 2013|y - 1| = 0

Ta có: (x + y)2012 \(\ge\)\(\forall\)x, y

      2013|y - 1| \(\ge\)\(\forall\)y

=> (x + y)2012 + 2013|y - 1| \(\ge\)\(\forall\)x,y

Dấu "=" cảy ra khi : \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\) => \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\) => \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy ...