Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
1. \(\left(x-4\right)^2-25=0\)
<=> (x-4+5).(x-4-5) = 0
<=> (x+1)(x-9) = 0
<=> \(\left[\begin{matrix}x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = {-1;9}
2. \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)
<=> (2x-1)(2x-1+2-x) = 0
<=> (2x-1)(x+1) = 0
<=> \(\left[\begin{matrix}2x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}2x=1\\x=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0.5\\x=-1\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = {-1 ; 0,5}
3. \(x^2+6x+9=4x^2\)
<=> \(\left(x+3\right)^2-4x^2=0\)
<=> (x+3+2x)(x+3-2x) = 0
<=> (3x+3)(3-x) = 0
<=> \(\left[\begin{matrix}3x+3=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}3x=-3\\x=3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=3\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = {-1 ; 3}
4. (2x-5)(x+11) = (5-2x)(2x+1)
<=> (2x-5)(x+11) = - (2x-5)(2x+1)
<=> x + 11 = -2x - 1
<=> x+2x = -12
<=> 3x = -12
<=> x = -4
Vậy phương trình có một nghiệm duy nhất là x = -4
5. \(2x^2+5x+3=0\)
<=> \(2x^2+2x+3x+3=0\)
<=> \(2x\left(x+1\right)+3\left(x+1\right)=0\)
<=> \(\left(x+1\right)\left(2x+3\right)=0\)
<=> \(\left[\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = { -1 ; -3/2 }
1) (x-4)^2-25=0
<=> (x-4+5)(x-4-5)=0
\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
2) (2x-1)2+(2-x)(2x-1)=0
<=> (2x-1)(2+2-x)=0
<=> \(\left[\begin{matrix}x=\frac{1}{2}\\x=4\end{matrix}\right.\)
3) x^2+6x+9=4x^2
<=> 3x^2 -6x-9=0
<=> x^2 -2x -3=0
<=> x^2 -3x+x-3=0
<=> x(x-3)+(x-3)=0
<=> (x-3)(x+1)=0
=>\(\left[\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
4) (2x-5)(x+11)=(5-2x)(2x+1)
-(5-2x)(x+11)-(5-2x)(2x+1)=0
(5-2x)(x+11+2x+1)=0
=>\(\left[\begin{matrix}x=\frac{5}{2}\\x=-4\end{matrix}\right.\)
5)2x^2+5x+3=0
2x^2+2x+3x+3=0
2x(x+1)+3(x+1)=0
(x+1)(2x+3)=0
=>\(\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\)
a: (2x+1)(3-x)(4-2x)=0
=>(2x+1)(x-3)(x-2)=0
hay \(x\in\left\{-\dfrac{1}{2};3;2\right\}\)
b: 2x(x-3)+5(x-3)=0
=>(x-3)(2x+5)=0
=>x=3 hoặc x=-5/2
c: =>(x-2)(x+2)+(x-2)(2x-3)=0
=>(x-2)(x+2+2x-3)=0
=>(x-2)(3x-1)=0
=>x=2 hoặc x=1/3
d: =>(x-2)(x-3)=0
=>x=2 hoặc x=3
e: =>(2x+5+x+2)(2x+5-x-2)=0
=>(3x+7)(x+3)=0
=>x=-7/3 hoặc x=-3
f: \(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)
hay \(x\in\left\{0;-3;\dfrac{1}{2}\right\}\)
1) (x+6)(3x-1)+x+6=0
⇔(x+6)(3x-1)+(x+6)=0
⇔(x+6)(3x-1+1)=0
⇔3x(x+6)=0
2) (x+4)(5x+9)-x-4=0
⇔(x+4)(5x+9)-(x+4)=0
⇔(x+4)(5x+9-1)=0
⇔(x+4)(5x+8)=0
3)(1-x)(5x+3)÷(3x-7)(x-1)
=\(\frac{\left(1-x\right)\left(5x+3\right)}{\left(3x-7\right)\left(x-1\right)}=\frac{\left(1-x\right)\left(5x+3\right)}{\left(7-3x\right)\left(1-x\right)}=\frac{\left(5x+3\right)}{\left(7-3x\right)}\)
Bài 2:
a: \(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18
= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18
= 2(1 - 2x) - 18 = 0
= 2 - 4x - 18 = 0
= -16 - 4x = 0
= -4x = 16
= x = \(\dfrac{16}{-4}=-4\)
b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0
= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0
= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0
= 12x - 5 = 0
= 12x = 5
= x = \(\dfrac{5}{12}\)
c) (x - 5)2 - x(x - 4) = 9
= x2 - 10x + 25 - x2 + 4x - 9 = 0
= -6x + 16 = 0
= -6x = -16
= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)
d) (x - 5)2 + (x - 4)(1 - x)
= x2 - 10x + 25 + 5x - x2 - 4 = 0
= -5x + 21 = 0
= -5x = -21
= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\)
Chúc bạn học tốt
\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)
\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)
\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)
\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)
\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)
\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)
\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)
\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)
\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)
\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)
\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)
\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)
\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)
(x + 2)2 - 2x - 4 = 0
<=> (x + 2)2 - 2(x + 2) = 0
<=> (x + 2)(x + 2 - 2) = 0
<=> x(x + 2) = 0
<=> \(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)