Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/(2.x-5)+17=6
=> 2x - 5 = -11
=> 2x = -6
=> x = 3
vậy_
2/10-2.(4-3x)=-4
=> 2(4 - 3x) = 14
=> 4 - 3x = 7
=> 3x = -3
=> x = -1
3/-12+3.(-x+7)=-18
=> 3(-x+7) = -6
=> -x+7 = -2
=> -x = -9
=> x = 9
4/24:(3.x-2)=-3
=> 3x - 2 = -8
=> 3x = -6
=> x = -2
5/-45:5.(-3-2.x)=3
=> 5(-3 - 2x) = -15
=> -3 - 2x = -3
=> - 2x = 0
=> x = 0
6/x.(x+7)=0
=> x = 0 hoặc x + 7 = 0
=> x = 0 hoặc x = -7
7/(x+12).(x-3)=0
=> x + 12 = 0 hoặc x - 3 = 0
=> x = -12 hoặc x = 3
8/(-x+5).(3-x)=0
=> -x + 5 = 0 hoặc 3 - x = 0
=> x = 5 hoặc x = 3
9/x.(2+x).(7-x)=0
=> x = 0 hoặc 2 + x = 0 hoặc 7 - x = 0
=> x = 0 hoặc x = -2 hoặc x = 7
10/(x-1).(x+2).(-x-3)=0
=> x - 1 = 0 hoặc x + 2 = 0 hoặc -x-3 = 0
=> x = 1 hoặc x = -2 hoặc x = -3
1) -12+3.(-x+7)=-18
3.(-x+7)=-18+12
3.(x+7)=-6
x+7=-6:3
x+7=-2
x=-2-7
x=-9
Làm theo công thức: tích bằng 0 thì một trong x thừa số bằng 0 rồi xét các trường hợp
\(1,x.\left(x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-7\end{cases}}}\)
\(2,\left(x+12\right).\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+12=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-12\\x=3\end{cases}}}\)
\(3,\left(-x+5\right).\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}-x+5=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=5\\x=3\end{cases}}}\)
4/ \(x.\left(2+x\right).\left(7-x\right)=0\)
\(\hept{\begin{cases}x=0\\2+x=0\\7-x=0\end{cases}}\) => \(\hept{\begin{cases}x=0\\x=-2\\x=7\end{cases}}\)
Vậy \(x=\left\{0,-2,7\right\}\)
5/ \(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\hept{\begin{cases}x-1=0\\x+2=0\\-x-3=0\end{cases}}\)=> \(\hept{\begin{cases}x=1\\x=-2\\x=-3\end{cases}}\)
2) \(\left(x-2\right).\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
vậy \(x=2\) hoặc \(x=-4\)
3) \(\left(x-2\right).\left(x+15\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+15=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-15\end{cases}}}\)
vậy \(x=2\) hoặc \(x=-15\)
4) \(\left(7-x\right).\left(x+19\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-x=0\\x+19=0\end{cases}\Rightarrow\orbr{\begin{cases}x=7\\x=-19\end{cases}}}\)
vậy \(x=7\) hoặc \(x=-19\)
8) \(2x^2-3=29\)
\(2x^2=29+3\)
\(2x^2=32\)
\(x^2=32\div2\)
\(x^2=16\)
\(\Rightarrow\orbr{\begin{cases}x^2=4^2\\x^2=\left(-4\right)^2\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(x=4\) hoặc \(x=-4\)
7)Ta có : x - 3 = 0 x - 5 = 0
=> x = 0 + 3 => x = 0 +5
=> x = 3 => x = 5
Ta lập bảng xét dấu :
x | 3 | 5 | |||
x-3 | - | 0 | + | + | |
x-5 | - | - | 0 | + | |
(x-3).(x-5) | + | 0 | - | 0 | + |
Vậy để (x-3).(x-5) < 0 => 3<x<5 => x = 4
6) | x | <3
=>x thuộc cộng trừ 1 , cộng trừ 2
1/\(x.\left(x+7\right)=0\)
\(\Rightarrow\left[\begin{matrix}x=0\\x+7=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=0-7\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=-7\end{matrix}\right.\)
2/\(\left(x+12\right).\left(x-3\right)=0\)
\(\Rightarrow\left[\begin{matrix}x+12=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0-12\\x=0+3\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=-12\\x=3\end{matrix}\right.\)
3/\(\left(-x+5\right).\left(3-x\right)\)
\(\Rightarrow\left[\begin{matrix}-x+5=0\\3-x=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}-x=0-5\\x=3-0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}-x=-5\\x=3\end{matrix}\right.\)
4/\(x.\left(2+x\right).\left(7-x\right)\)
\(\Rightarrow\left[\begin{matrix}x=0\\2+x=0\\7-x=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=0-2\\x=7-0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0\\x=-2\\x=7\end{matrix}\right.\)
5/\(\left(x-1\right).\left(x+2\right).\left(-x-3\right)=0\)
\(\Rightarrow\left[\begin{matrix}x-1=0\\x+2=0\\-x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=0+1\\x=0-2\\-x=0+3\end{matrix}\right.\)
\(\Rightarrow\left[\begin{matrix}x=1\\x=-2\\-x=3\end{matrix}\right.\)
Ai tl nhanh mk k nha !
a) \(|x+2|=0\)\(\Rightarrow x+2=0\)\(\Rightarrow x=-2\)
Vậy \(x=-2\)
b) \(|x-5|=|-7|=7\)\(\Rightarrow\orbr{\begin{cases}x-5=7\\x-5=-7\end{cases}}\Rightarrow\orbr{\begin{cases}x=12\\x=-2\end{cases}}\)
Vậy \(x\in\left\{-2;12\right\}\)
c) \(|x+3|=7-\left(-2\right)=7+2=9\)
\(\Rightarrow\orbr{\begin{cases}x+3=-9\\x+3=9\end{cases}}\Rightarrow\orbr{\begin{cases}x=-12\\x=6\end{cases}}\)
Vậy \(x\in\left\{-12;6\right\}\)