Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; -2\(x\) - 3.(\(x-17\)) = 34 - 2.( - \(x\) + 25)
- 2\(x\) - 3\(x\) + 51 = 34 + 2\(x\) - 50
2\(x\) + 2\(x\) + 3\(x\) = - 34 + 50 + 51
7\(x\) = 67
\(x\) = 67 : 7
\(x\) = \(\dfrac{67}{7}\)
Vậy \(x\) = \(\dfrac{67}{7}\)
b; 17\(x\) + 3.(- 16\(x\) - 37) = 2\(x\) + 43 - 4\(x\)
17\(x\) - 48\(x\) - 111 = 2\(x\) - 4\(x\) + 43
- 31\(x\) - 2\(x\) + 4\(x\) = 111 + 43
- \(x\) x (31 + 2 - 4) = 154
- \(x\) x (33 - 4) = 154
- \(x\) x 29 = 154
- \(x\) = 154 : (-29)
\(x\) = - \(\dfrac{154}{29}\)
Vậy \(x=-\dfrac{154}{29}\)
1) x - 36 + 12 = - x+ 10
=> x + x = 10 + 24
=> 2x = 34
=> x = 34/2 = 17
2) (x + 15) - (11 - x) = (-2)2
=> x + 15 - 11 + x = 4
=> 2x = 4 - 4
=> 2x = 0
=> x = 0
3) 40 - 4x2 = (-6)2
=> 40 - 4x2 = 36
=> 4x2 = 40 - 36
=> 4x2 = 4
=> x2 = 1
=> x = \(\pm\)1
4) (-50) + 10x2 = (-25) x |-2|
=> -50 + 10x2 = -50
=> 10x2 = -50 + 50
=> 10x2 = 0
=> x2 = 0
=> x = 0
5) |x + 1| = 2020
=> \(\orbr{\begin{cases}x+1=2020\\x+1=-2020\end{cases}}\)
=> \(\orbr{\begin{cases}x=2019\\x=-2021\end{cases}}\)
6) (x + 1)5 + 8 = 0 (xem lại đề)
7) (-20) + x3 : 16 = -24
=> x3 : 16 = -24 + 20
=> x3 : 16 = -4
=> x3 = -4 . 16
=> x3 = -64 = (-4)3
=> x = -4
9) x14 = x17
=> x14 - x17 = 0
=> x14(1 - x3) = 0
=> \(\orbr{\begin{cases}x^{14}=0\\1-x^3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
10) (-36) + (1 - x)2 = 0
=> (1 - x)2 = 36
=> (1 - x)2 = 62
=> \(\orbr{\begin{cases}1-x=6\\1-x=-6\end{cases}}\)
=> \(\orbr{\begin{cases}x=-5\\x=7\end{cases}}\)
Bài 1:
1; ( - 35) : (-7) = 5
2; (- 42) : 21 = - 2
3; 45 : (-9) = -5
4; 18 : 9 = 2
5; (- 30) : (- 15) = 2
6; 0 : 18 = 0
7; 0 : (-13) = 0
8; 44 : (-4) = - 11
9; - 55 : 11 = - 5
10; 46 : 23 = 2
c)
\(4\left(3x-4\right)-2=18\)
<=> \(12x-16-2=18\)
<=> \(12x=36\)
<=> \(x=3\)
Vậy x=3
d)
\(\left(3x-10\right):10=50\)
<=> \(3x-10=500\)
<=> \(3x=510\)
<=> x= \(170\)
Vậy x= 170
f)
\(x-\left[42+\left(-25\right)\right]=-8\)
<=> \(x-17=-8\)
<=> x= \(9\)
Vậy x=9
h)
\(x+5=20-\left(12-7\right)\)
<=> \(x+5=15\)
<=> \(x=10\)
Vậy x= 10
k)
\(\left|x-5\right|=7-\left(-3\right)\)
<=> \(\left|x-5\right|=10\)
* Với \(x>=5\) ; ta được:
\(x-5=10\)
<=> x= 15 (thoả mãn điều kiện )
*Với \(x< 5\) ; ta được:
\(-\left(x-5\right)=10\)
<=> \(-x+5=10\)
<=> \(-x=5\)
<=> \(x=-5\) (thoả mãn điều kiện)
Vậy x=15 ; x= -5
i)
\(\left|x-5\right|=\left|7\right|\)
<=> \(\left|x-5\right|=7\)
*Với \(x>=5\) ; ta được:
\(x-5=7\)
<=> \(x=12\) (thoả mãn)
*Với \(x< 5\) ; ta được:
\(-\left(x-5\right)=7\)
<=> \(-x=2\)
<=> \(x=-2\) (thoả mãn)
Vậy x= 12; x= -2
m)
\(2^{x+1}.2^{2009}=2^{2010}\)
<=> \(2^{x+1+2009}=2^{2010}\)
<=> \(2^{x+2010}=2^{2010}\)
=> \(x+2010=2010\)
=> \(x=0\)
Vậy x=0
n)
\(10-2x=25-3x\)
<=>\(x=15\)
Vậy x=15