Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,2x\left(x^3-3\right)-2x^4=18\\ 2x^4-6x-2x^4=18\\ -6x=18\\ x=-3\)
\(b,9x\left(4-x\right)+\left(3x+1\right)^2=2\\ 36x-9x^2+9x^2+6x+1=2\\ 42x=2-1\\ 42x=1\\ x=\dfrac{1}{42}\)
\(a,\Leftrightarrow2x^4-3x-2x^4=18\Leftrightarrow-3x=18\Leftrightarrow x=-6\\ b,\Leftrightarrow36x-9x^2+9x^2+6x+1=2\\ \Leftrightarrow42x=1\Leftrightarrow x=\dfrac{1}{42}\)
\(\left(3x+1\right)^2=9\left(x-2\right)^2\)
\(\Leftrightarrow9x^2+6x+1=9\left(x^2-4x+4\right)\)
\(\Leftrightarrow9x^2+6x+1=9x^2-36x+36\)
\(\Leftrightarrow9x^2+6x+1-9x^2+36x-36=0\)
\(\Leftrightarrow42x-35=0\)
\(\Leftrightarrow42x=35\)
\(\Leftrightarrow x=\dfrac{35}{42}=\dfrac{5}{6}\)
Vậy: \(S=\left\{\dfrac{5}{6}\right\}\)
\(\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{2x+4}{4-x^2}\\ =\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2x+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x+2x+4-2x-4}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{x}{x+2}\)
\(\left|x+1\right|=3\\ \left[{}\begin{matrix}x+1=3\\x+1=-3\end{matrix}\right.=>\left[{}\begin{matrix}x=2\left(loai\right)\\x=-4\left(tm\right)\end{matrix}\right.\)
với x=-4 thì
\(\dfrac{-4}{-4+2}=\dfrac{-4}{-2}=2\)
\(=>P=\dfrac{x}{x+2}+\dfrac{2}{x-2}+\dfrac{-2x-4}{x^2-4}\)`(x ne +-2)`
\(P=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\dfrac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{-2x-4}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x^2-2x+2x+4-2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{x^2-2x}{\left(x-2\right)\left(x+2\right)}=\dfrac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)
\(P=\dfrac{x}{x+2}\)
`|x+1| =3`
`=>[(x+1=3),(x+1=-3):}`
`=> [(x=3-1=2(ktm) ),(x=-3-1=-4(t/m)):}`
Thay `x=-4` vào `P` ta đc
`P= (-4)/(-4+2) = 2`
Để A là số nguyên thì \(2x-1\in\left\{1;-1;5;-5\right\}\)
hay \(x\in\left\{1;0;3;-2\right\}\)
Bài 2:
a: Ta có: \(2\left(5x-8\right)-3\left(4x-5\right)=4\left(3x-4\right)+11\)
\(\Leftrightarrow10x-16-12x+15=12x-16+11\)
\(\Leftrightarrow-14x=-4\)
hay \(x=\dfrac{2}{7}\)
b: Ta có: \(2x\left(6x-2x^2\right)+3x^2\left(x-4\right)=8\)
\(\Leftrightarrow12x^2-4x^3+3x^3-12x^2=8\)
\(\Leftrightarrow x^3=-8\)
hay x=-2
Bài 1:
a: Ta có: \(I=x\left(y^2-xy^2\right)+y\left(x^2y-xy+x\right)\)
\(=xy^2-x^2y^2+x^2y^2-xy^2+xy\)
\(=xy\)
=1
b: Ta có: \(K=x^2\left(y^2+xy^2+1\right)-\left(x^3+x^2+1\right)\cdot y^2\)
\(=x^2y^2+x^3y^2+x^2-x^3y^2-x^2y^2-y^2\)
\(=x^2-y^2\)
\(=\dfrac{1}{4}-\dfrac{1}{4}=0\)
\(x^3+3x^2+x+a=x^2\left(x-2\right)+5x\left(x-2\right)+11\left(x-2\right)+22+a=\left(x-2\right)\left(x^2+5x+11\right)+22+a⋮\left(x-2\right)\)
\(\Rightarrow22+a=0\Rightarrow a=-22\)
Bài 2:
a: Thay x=1 và y=1 vào y=ax+5, ta được:
\(a\cdot1+5=1\)
=>a+5=1
=>a=-4
b: a=-4 nên y=-4x+5
x | -2 | -1 | 0 | 1/2 | -3 |
y=-4x+5 | 13 | 9 | 5 | 3 | -7 |
Bài 1:
a: \(y=-2\left(x+5\right)-4\)
\(=-2x-10-4\)
=-2x-14
a=-2; b=-14
b: \(y=\dfrac{1+x}{2}\)
=>\(y=\dfrac{1}{2}x+\dfrac{1}{2}\)
=>\(a=\dfrac{1}{2};b=\dfrac{1}{2}\)
(x - 1)3 = (1 - x)2
<=> (x - 1)3 - (1 - x)2 = 0
<=> x3 - 2x2 + x - x2 - 2x - 1 - 1 + 2x - x2 = 0
<=> x3 - 4x2 + 5x - 2 = 0
<=> (x2 - 3x + 2)(x - 1) = 0
<=> (x - 2)(x - 1)(x - 1) = 0
<=> x - 2 = 0 hoặc x - 1 = 0
<=> x = 2 hoặc x = 1
=> x = 2 hoặc x = 1