K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2022

\(\left(x+1\right)^2-3\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[\left(x+1\right)-3\right]=0\)

 

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

9 tháng 3 2023

\(\left(2x-1\right)^2+\left(x-3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1+x-3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=1\\3x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{4}{3}\end{matrix}\right.\)

Vậy \(S=\left\{\dfrac{1}{2};\dfrac{4}{3}\right\}\)

25 tháng 2 2022

a,\(\left(x-4-5\right)\left(x-4+5\right)=0\Leftrightarrow\left(x-9\right)\left(x+1\right)=0\Leftrightarrow x=9;x=-1\)

b, \(\left(x-3-x-1\right)\left(x-3+x+1\right)=0\Leftrightarrow2x-2=0\Leftrightarrow x=1\)

c, \(\left(x^2-4\right)\left(2x-3\right)-\left(x^2-4\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(2x-3-x+1\right)=0\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-2\right)=0\Leftrightarrow x=-2;x=2\)

d, \(\left(3x-7\right)^2-\left(2x+2\right)^2=0\Leftrightarrow\left(3x-7-2x-2\right)\left(3x-7+2x+2\right)=0\)

\(\Leftrightarrow\left(x-9\right)\left(5x-5\right)=0\Leftrightarrow x=1;x=9\)

25 tháng 2 2022

a) Ta có: 4x-20=0

⇔4x=20

hay x=5

Vậy: S={5}

b) Ta có: 2x+x+12=0

⇔3x+12=0

⇔3x=−12

hay x=-4

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

20 tháng 2 2022

\(4x^2+4x+1+4x+2-2x^2-x\le0\)

\(\Leftrightarrow2x^2+7x+3\le0\Leftrightarrow\left(2x+1\right)\left(x+3\right)\le0\)

TH1 : \(\left\{{}\begin{matrix}2x+1\ge0\\x+3\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{2}\\x\le-3\end{matrix}\right.\)<=> -1/2 =< x =< -3 

TH2 : \(\left\{{}\begin{matrix}2x+1\le0\\x+3\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le-\dfrac{1}{2}\\x\ge-3\end{matrix}\right.\)( vô lí ) 

5 tháng 9 2021

\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-\left(x-3\right)^2=0\)

\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\\left(x+3\right)^2=1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x+3=1\\x+3=-1\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)

5 tháng 9 2021

cảm ơn nhìu ạ!!!!

 

 

Ta có: \(x^3-5x^2+6x=0\)

\(\Leftrightarrow x\left(x^2-5x+6\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)

Vậy: S={0;2;3}

18 tháng 2 2021

\(x^3-5x^2+6x=0\)

\(\Leftrightarrow x^3-2x^2-3x^2+6x=0\)

\(\Leftrightarrow x^2\left(x-2\right)-3x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^2-3x\right)\left(x-2\right)=0\)

\(\Leftrightarrow x\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=3\end{matrix}\right.\)

\(S=\left\{0,2,3\right\}\)

23 tháng 2 2022

D

23 tháng 2 2022

D

28 tháng 7 2021

\(5x^2-3=0\Leftrightarrow x^2=\dfrac{3}{5}\Leftrightarrow x=\pm\sqrt{\dfrac{3}{5}}=\pm\dfrac{\sqrt{15}}{5}\)

\(4x^3+x=0\Leftrightarrow x\left(4x^2+1\right)=0\Leftrightarrow x=0;4x^2+1>0\)

28 tháng 7 2021

\(5x^2-3=0\\ \Leftrightarrow5x^2=3\\ \Leftrightarrow x^2=\dfrac{3}{5}\\\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\dfrac{3}{5}}\\x=-\sqrt{\dfrac{3}{5}}\end{matrix}\right. \)

vậy \(x=\sqrt{\dfrac{3}{5}}\) ;\(x=-\sqrt{\dfrac{3}{5}}\)

\(4x^3+x=0\\ \Leftrightarrow x\left(4x^2+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\4x^2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{-1}{4}\left(vl\right)\end{matrix}\right.\)

vậy x=0