Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\sqrt{\frac{x^3}{x^3+8y^3}}\)
\(\Rightarrow A=\sqrt{\frac{1}{1+\left(\frac{2y}{x}\right)^3}}\)
\(\Rightarrow A=\sqrt{\frac{1}{\left(1+\frac{2y}{x}\right)\left(1-\frac{2y}{x}+\frac{4y^2}{x^2}\right)}}\)
\(\Rightarrow A\ge\frac{1}{\frac{\left(1+\frac{2y}{x}\right)+\left(1-\frac{2y}{x}+\frac{4y^2}{x^2}\right)}{2}}\)
\(\Rightarrow A\ge\frac{2}{2+\frac{4y^2}{x^2}}=\frac{1}{1+2\left(\frac{y}{x}\right)^2}\)
VÀ
\(B=\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(\Rightarrow B=\sqrt{\frac{4}{1+\left(\frac{x}{y}+1\right)^3}}\)
\(\Rightarrow B=\frac{2}{\sqrt{\left[1+\left(1+\frac{x}{y}\right)\right]\left[1-\left(1+\frac{x}{y}\right)+\left(1+\frac{x}{y}\right)^2\right]}}\)
\(\Rightarrow B\ge\frac{2}{\frac{\left[1+\left(1+\frac{x}{y}\right)\right]+\left[1-\left(1+\frac{x}{y}\right)+\left(1+\frac{x}{y}\right)^2\right]}{2}}\)
\(\Rightarrow B\ge\frac{4}{2+\left(1+\frac{x}{y}\right)^2}\)
Suy ra :
\(P=A+B\ge\frac{1}{1+2\left(\frac{y}{x}\right)^2}+\frac{4}{2+\left(1+\frac{x}{y}\right)^2}\)
\(\Rightarrow P\ge\frac{x^2}{x^2+2y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\)
\(\Rightarrow P\ge\frac{x^2}{x^2+2y^2}+\frac{4y^2}{2y^2+2\left(x^2+y^2\right)}=\frac{x^2}{x^2+2y^2}+\frac{4y^2}{2x^2+4y^2}=\frac{x^2}{x^2+2y^2}+\frac{2y^2}{x^2+2y^2}=1\)
"=" khi \(x=y\)
lô bn xàm lồn
bn trẩu , m phải ARMY hơm
nếu phải thì nhục quá trời,tự nhiên fan BTS lại chưa con phò như mài ,u hú hú
bớt sàm lại đuy,ko thì đừng làm AMI nx,ư~~
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam
Đúng rồi Thắng , bài này đúng ra phải là \(A=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(A=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y\left(y^3+\left(x+y\right)^3\right)}}\)
Áp dụng BĐT Cauchy, ta có:
\(x^4+8xy^3=x^4+8.xy.y^2\le x^4+4\left(x^2y^2+y^4\right)=\left(x^2+2y^2\right)^2\)
\(\Rightarrow\frac{x^2}{\sqrt{x^3+8xy^3}}\ge\frac{x^2}{x^2+2y^2}\)
\(\sqrt{y\left(y^3+\left(x+y\right)^3\right)}=\sqrt{\left(xy+2y^2\right)\left(x^2+y^2+xy\right)}\le\frac{x^2+3y^2+2xy}{2}=\frac{2y^2+\left(x+y\right)^2}{2}\)
\(\le\frac{2y^2+2\left(x^2+y^2\right)}{2}=x^2+2y^2\)
\(\Rightarrow A\ge\frac{x^2}{x^2+2y^2}+\frac{2y^2}{x^2+2y^2}=1\)
Vậy minA = 1 tại x = y > 0
tìm Min của:
\(\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\) với x,y >0
\(T=\sqrt{\dfrac{x^3}{x^3+8y^3}}+\sqrt{\dfrac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\dfrac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\dfrac{2y^2}{\sqrt{y\left(y^3+\left(x+y\right)^3\right)}}\)
\(=\dfrac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\dfrac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\dfrac{2x^2}{2x^2+4y^2}+\dfrac{4y^2}{2y^2+\left(x+y\right)^2}\)\(\ge\dfrac{2x^2}{2x^2+4y^2}+\dfrac{4y^2}{4y^2+2x^2}\)
\(\ge\dfrac{2x^2+4y^2}{2x^2+4y^2}=1\)
\(Q=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\)\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow Q\ge1\).Vậy MinQ=1
\(Q=\frac{x^2}{\sqrt{x^4+8xy^3}}+\frac{2y^2}{\sqrt{y\left(y^3+\left(x+y\right)^3\right)}}\)
Áp dụng bất đẳng thức Cauchy ta có:
\(x^4+8xy^3=x^4+8.xy.y^2\le x^4+4\left(x^2y^2+y^4\right)=\left(x^2+2y^2\right)^2\)
\(\Rightarrow\frac{x^2}{\sqrt{x^3+8xy^3}}\ge\frac{x^2}{x^2+2y^2}\)
\(\sqrt{y\left(y^3+\left(x+y\right)^3\right)}=\sqrt{\left(xy+2y^2\right)\left(x^2+y^2+xy\right)}\le\frac{x^2+3y^2+2xy}{2}=\frac{2y^2+\left(x+y\right)^2}{2}\)
\(\le\frac{2y^2+2\left(x^2+y^2\right)}{2}=x^2+2y^2\)
\(\Rightarrow Q\ge\frac{x^2}{x^2+2y^2}+\frac{2y^2}{x^2+2y^2}=1\)
Vậy minQ= 1 tại \(x=y>0\)