K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 1 2017

\(2P=2x-4\sqrt{xy}+6y-4\sqrt{x}+4019\)

\(=\left(\left(x-4\sqrt{xy}+y\right)-\frac{2}{2}.\left(\sqrt{x}-2\sqrt{y}\right)+\frac{1}{4}\right)+\left(x-\frac{2.3.\sqrt{x}}{2}+\frac{9}{4}\right)+2\left(y-\frac{2\sqrt{y}}{2}+\frac{1}{4}\right)+4016\)

\(=\left(\left(\sqrt{x}-2\sqrt{y}\right)^2-\frac{2}{2}.\left(\sqrt{x}-2\sqrt{y}\right)+\frac{1}{4}\right)+\left(x-\frac{2.3.\sqrt{x}}{2}+\frac{9}{4}\right)+2\left(y-\frac{2\sqrt{y}}{2}+\frac{1}{4}\right)+4016\)

\(=\left(\sqrt{x}-2\sqrt{y}-\frac{1}{2}\right)^2+\left(\sqrt{x}-\frac{3}{2}\right)^2+2\left(\sqrt{y}-\frac{1}{2}\right)^2+4016\ge2016\)

\(\Rightarrow P\ge2008\)khi \(\hept{\begin{cases}x=\frac{9}{4}\\y=\frac{1}{4}\end{cases}}\)

12 tháng 1 2017

tung hỏa mù hả sao tăng Hệ số lên làm gì?

​​căn x=a, căn y=b

​​P=(a^2+b^2-2ab-2a+2b+1)+(2b^2-2b+1/2)+2009+1/2-(1+1/2)

​P=(a-b-1)^2+2(b-1/2)^2+2008>=2008

​đăng thức b=1/2=>y=1/4; và a-1/2-1=0=>a=3/2=>x=9/4

NV
18 tháng 2 2020

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)

\(P=a^2-2ab+3b^2-2a+2009,5\)

\(P=\frac{1}{3}\left(9b^2-6ab+a^2\right)+\frac{2}{3}\left(a^2-3a+\frac{9}{4}\right)+2008\)

\(P=\frac{1}{3}\left(3b-a\right)^2+\frac{2}{3}\left(a-\frac{3}{2}\right)^2+2008\ge2008\)

\(P_{min}=2008\) khi \(\left\{{}\begin{matrix}a-\frac{3}{2}=0\\3b-a=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{3}{2}\\b=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{9}{4}\\y=\frac{1}{4}\end{matrix}\right.\)

15 tháng 10 2016

Đặt \(a=\sqrt{x},b=\sqrt{y}\) thì \(a,b\ge0\)

\(P=a^2-2ab+3b^2-2a+2004,5=\left(\frac{a^2}{3}-2ab+3b^2\right)+\left(\frac{2}{3}a^2-2a+\frac{3}{2}\right)+2003\)

\(=\left(\frac{a}{\sqrt{3}}-\sqrt{3}b\right)^2+\frac{2}{3}\left(a-\frac{3}{2}\right)^2+2003\ge2003\)

Dấu "=" xảy ra khi a = 3/2 , b = 1/2

Vậy Min P = 2003 khi x = 9/4 , y = 1/4

Đặt \(a=\sqrt{x},b=\sqrt{y}\) thì \(a,b\ge0\)

\(P=a^2-2ab+3b^2-2a+2004,5=\left(\frac{a^2}{3}-2ab+3b^2\right)+\left(\frac{2}{3}a^2-2a+\frac{3}{2}\right)+2003\)

\(=\left(\frac{a}{\sqrt{3}}-\sqrt{3}b\right)^2+\frac{2}{3}\left(a-\frac{3}{2}\right)^2+2003\ge2003\)

Dấu "=" xảy ra khi a = 3/2 , b = 1/2

Vậy Min P = 2003 khi x = 9/4 , y = 1/4

5 tháng 2 2018

Sử dụng bất đẳng thức Cauchy để tìm. 

DD
13 tháng 5 2021

\(x^3+y^3+xy=x^2+y^2\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)

\(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).

\(x+y=1\Rightarrow0\le x,y\le1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)

Dấu \(=\)xảy ra tại \(x=0,y=1\).

\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)

Dấu \(=\)xảy ra tại \(x=1,y=0\).

16 tháng 6 2019

\(A=x-2\sqrt{xy}+3y-2\sqrt{x}+1\)

     \(=\frac{1}{3}x-2\sqrt{\frac{1}{3}x}.\sqrt{3y}+3y+\frac{2}{3}x-2\sqrt{\frac{2}{3}x}.\sqrt{\frac{3}{2}}+\frac{3}{2}-\frac{3}{2}+1\)

      \(=\left(\sqrt{\frac{1}{3}x}-\sqrt{3y}\right)^2+\left(\sqrt{\frac{2}{3}x}-\sqrt{\frac{3}{2}}\right)^2+1-\frac{3}{2}\ge\frac{-1}{2}\)

      Dấu "=" xảy ra <=>  \(\hept{\begin{cases}\sqrt{\frac{1}{3}x}-\sqrt{3y}=0\\\sqrt{\frac{2}{3}x}-\sqrt{\frac{3}{2}}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{3}x=3y\\\frac{2}{3}x=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}y=\frac{1}{4}\\x=\frac{9}{4}\end{cases}}}\)

Vậy Amin = -1/2 khi x = 9/4 và y = 1/4

P/s: Phân tích hơi lẻ nhưng chịu thôi. Bạn xem đi có gì không hiểu hỏi mình.

16 tháng 6 2019

Bạn nào giải hộ mình với đang cần gấp

23 tháng 1 2021

1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:

\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).

Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).

NV
23 tháng 1 2021

2.

\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)

Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)

\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )

\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)

\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)

Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)

3. Chia 2 vế giả thiết cho \(x^2y^2\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)

\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)

\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)

Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)