Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)
Ta có:
\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)\(< \)\(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\left(1\right)\)
Mà \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)\cdot n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\left(2\right)\)(đúng. vì \(n\ge2\))
Từ (1) và (2) \(\Rightarrow A< B< 1\Rightarrow A< 1\)
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(1-A=1-\frac{n^5+1}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)
\(1-B=1-\frac{n^4+1}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)
Vì n6 + 1 < n6 +n
=> 1 -A > 1-B
=> A < B
Cho n $\in$∈ N và n $\ge$≥ 2. Hãy so sánh.A= $\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+............+\frac{1}{n^2}$122 +132 +142 +............+1n2 với 1 tịk nhé cho tròn 160
với k>=2:
1/k² < 1/k(k-1) = (k-(k-1))/k(k-1) =1/(k-1) +1/k
apf dụng với k=2,3,...,n sẽ tính được A<1
\(1-A=\frac{n^6-n^5}{n^6+1}=\frac{n^5\left(n-1\right)}{n^6+1}\)
\(1-B=\frac{n^5-n^4}{n^5+1}=\frac{n^4\left(n-1\right)}{n^5+1}=\frac{n^5\left(n-1\right)}{n^6+n}\)
Vì n6 +1 < n6 + n
=> 1 -A > 1-B
Hay A < B
\(A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1-\frac{1}{n}<1\)
a) Theo đầu bài ta có:
\(\orbr{\begin{cases}\frac{n}{n+1}=\frac{n\left(n+4\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}\\\frac{n+1}{n+4}=\frac{\left(n+1\right)\left(n+1\right)}{\left(n+1\right)\left(n+4\right)}=\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\end{cases}}\)
Nếu \(n=0\Rightarrow2n=0< 1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}< \frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}< \frac{n+1}{n+4}\)
Nếu \(n\ge1\Rightarrow2n\ge2>1\Rightarrow\frac{n^2+2n+2n}{\left(n+1\right)\left(n+4\right)}>\frac{n^2+2n+1}{\left(n+1\right)\left(n+4\right)}\Rightarrow\frac{n}{n+1}>\frac{n+1}{n+4}\)
\(\text{Ta có}:1-\frac{n}{n+1}=\frac{1}{n+1}\)
\(\text{Ta có}:1-\frac{n+1}{n+2}=\frac{1}{n+2}\)
\(\text{Mà }\frac{1}{n+1}>\frac{1}{n+2}\)
\(\text{Nên }\frac{n}{n+1}>n+\frac{n+1}{n+2}\)
Ta có:
\(\frac{n}{n+1}