K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2016

vì 2 nhân cho số nguyên dương nào cũng là số chẵn nên khi cộng cho 1 thì sẽ thành số lẽ

mà (-1) có số mũ là số chẵn thì = 1. nhưng có số mũ là số lẽ thì = -1

vậy suy ra : (-1)2n+1 = - 1

13 tháng 1 2016

-1 nhé !

tích tớ với !

7 tháng 3 2016

\(\frac{2^n}{8^k}=\frac{2^{3k+1}}{8^k}=\frac{2^{3k}.2}{8^k}=\frac{\left(2^3\right)^k.2}{8^k}=\frac{8^k.2}{8^k}=2\)

Vậy.....

Violympic vòng 15 à?

7 tháng 3 2016

\(\frac{2n}{8k}=\frac{2.\left(3k+1\right)}{8k}=\frac{6k+2}{8k}=\frac{2.\left(3k+1\right)}{2.4k}=\frac{3k+1}{4k}\)

Vậy với n=3k+1 thì \(\frac{2n}{8k}=\frac{3k+1}{4k}\)

9 tháng 8 2018

Giải: Chú ý vế trái (VT) có n số hạng, n = 1: VT = 1, n = 2: VT = 1 + 3…

  • Với n = 1: (1) ↔ 1 = 1²: mệnh đề này đúng. Vậy (1) đúng khi n = 1.
  • Giả sử (1) đúng khi n = k ↔ 1 + 3 + 5 + … + (2k – 1) = k² (2), ta chứng minh (1) cũng đúng khi n = k + 1 ↔ 1 + 3 + 5 + … + (2k – 1) + [2(k + 1)] = (k + 1)² (3)

Thật vậy: VT(3) = VT(2) + [2(k + 1) - 1]= VP(2) + [2k + 1]

                            = k² + 2k + 1 = (k + 1)²

                            = VP(3) (đpcm)

Theo phương pháp quy nạp, (1) đúng với mọi số nguyên dương n.

9 tháng 8 2018

Số số hạng của dãy số trên là:

( 2n - 1 - 1 ) : 2 +1 

= ( 2n - 2 ) : 2 + 1

= 2( n - 1 ) : 2 + 1

= n - 1 + 1

= n

Tổng của dãy số trên là:

( 2n - 1 + 1 ) . n : 2

= 2n.n : 2

= n.n

= n2

12 tháng 11 2021

ĐKXĐ: \(x\ne-1\)

\(X=\dfrac{2n+10}{n+1}=\dfrac{2\left(n+1\right)+8}{n+1}=2+\dfrac{8}{n+1}\in Z\)

\(\Rightarrow\left(n+1\right)\inƯ\left(8\right)=\left\{-8;-4;-2;-1;1;2;4;8\right\}\)

Kết hợp ĐKXĐ:

\(\Rightarrow n\in\left\{-9;-5;-3;-2;0;1;3;7\right\}\)

25 tháng 9 2017

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

3 tháng 10 2019

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

HQ
Hà Quang Minh
Giáo viên
16 tháng 9 2023

a)      \(384{\rm{ }}400 = 3,{844.10^5}\) km

b)      \(1989{\rm{ }}.{\rm{ }}{10^{27}} =1,989.10^3.10^{27}= 1,{989.10^{30}}\)kg

c)      \(1{\rm{ }}898{\rm{ }}.{\rm{ }}{10^{24}} =1,898.10^3. 10^{24}=1,{898.10^{27}}\)kg