Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có: y’ = 3x2 + 2(m+1)x – (3m+2)
Hàm số đồng biến trên khoảng (0;1)
3x2 + 2(m+1)x – (3m+2) ≥ 0 ∀ x ∈ (0;1)
⇔ m ≤ − 3 x 2 + 2 x − 2 2 x − 3 ∀ x ∈ (0;1)
Xét hàm số: g = − 3 x 2 + 2 x − 2 2 x − 3 D =(0;1)
Ta có: g’ = − 6 x 2 − 18 x − 2 ( 2 x − 3 ) 2
ð g’ = 0 ⇔ x = 9 ± 93 6 (không thoản mãn)
Ta có bảng biến thiên
Vậy với m ≤ 3 hàm số đồng biến trên khoảng (0;1)
Đáp án D
Hàm số đồng biến trên khoảng (2;+∞)
⇔ y’ ≥ 0 ∀ x ϵ D (2;+∞)
Ta có: (-m; +∞) = D (2;+∞)
ð m ≥ -2
Ta có: y’ = m 2 − 3 ( x + m ) 2
ð y’ ≥ 0 ⇔ m ≥ 3 hoặc m ≤ - 3
Vậy tập giá trị m thỏa mãn đề bài là: m ≥ 3 hoặc -2 ≤ m ≤ - 3
Đáp án C
Đặt t = e x do x ∈ - 2 ; - 1 ⇒ t ∈ 1 e 2 ; 1 e khi đó y = t - 1 t - m t ≠ m
Ta có y ' = - m + 1 t - m 2 , để hàm số đồng biến - m + 1 > 0 m ∈ 1 e 2 ; 1 e ⇒ [ m ≤ 1 e 2 1 e ≤ m < 1
Đáp án A
Đặt t = tanx, ta tìm m để hàm số