Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
căn có nghĩa
\(\Leftrightarrow\frac{a}{3}\ge0\)
\(\Leftrightarrow a\ge0\)
b
căn có nghĩa
\(\Leftrightarrow-5a\ge0\)
\(\Leftrightarrow b\le0\left(-5\le0\right)\)
c
căn có nghĩa
\(\Leftrightarrow4-a\ge0\)
\(\Leftrightarrow-a\ge0-4\)
\(\Leftrightarrow-a\ge-4\)
\(\Leftrightarrow a\le4\)
d
căn có nghĩa
\(\Leftrightarrow3a+7\ge0\)
\(\Leftrightarrow a\ge-\frac{7}{3}\)
a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge6\\x\le2\end{matrix}\right.\)
b: ĐKXĐ: \(-1\le x\le1\)
c: ĐKXĐ: \(x\le-2\)
a) để căn thức có nghĩa thì \(3x^2+1\ge0\) (luôn đúng) nên căn luôn có nghĩa
b) để căn thức có nghĩa thì \(4x^2-4x+1\ge0\Rightarrow\left(2x-1\right)^2\ge0\) (luôn đúng)
nên căn luôn có nghĩa
c) để căn thức có nghĩa thì \(\dfrac{3}{x+4}\ge0\) mà \(3>0\Rightarrow x+4>0\Rightarrow x>-4\)
h) để căn thức có nghĩa thì \(x^2-4\ge0\Rightarrow x^2\ge4\Rightarrow\left|x\right|\ge2\)
i) để căn thức có nghĩa thì \(\dfrac{2+x}{5-x}\ge0\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}2+x\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2+x\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}-2\le x< 5\\\left\{{}\begin{matrix}x\le-2\\x>5\end{matrix}\right.\left(l\right)\end{matrix}\right.\Rightarrow-2\le x< 5\)
a) ĐKXĐ: \(x\in R\)
b) ĐKXĐ: \(x\in R\)
c) ĐKXĐ: x>-4
h) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le-2\end{matrix}\right.\)
a) ĐKXĐ: \(\dfrac{a}{3}\ge0\Leftrightarrow a\ge0\)
b) ĐKXĐ: \(-5a\ge0\Leftrightarrow a\le0\)
c) ĐKXĐ: \(4-a\ge0\Leftrightarrow a\le4\)
d) ĐKXĐ: \(3a+7\ge0\Leftrightarrow a\ge-\dfrac{7}{3}\)
a: ĐKXĐ: \(a\ge0\)
b: ĐKXĐ: \(a\le0\)
c: ĐKXĐ: \(a\le4\)
d: ĐKXĐ: \(a\ge-\dfrac{7}{3}\)
1)\(\sqrt{3-2\sqrt{2}}-\sqrt{2}=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{2}=\sqrt{2}-1-\sqrt{2}=-1\left(đpcm\right)\)
2) \(\sqrt{6-2\sqrt{5}}-\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}-1-\sqrt{5}-1=-2\)
3) \(ĐK:\)\(\left\{{}\begin{matrix}\dfrac{x-1}{x+3}\ge0\\x+3\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1\ge0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\le0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\\x\ne-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x< -3\end{matrix}\right.\)
4) \(ĐK:\left\{{}\begin{matrix}7-x\ge0\\a\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le7\\a\ge0\end{matrix}\right.\)
a, ĐK \(\hept{\begin{cases}a\ge1\\a\le-1\end{cases}}\)
b, ĐK a\(\le\)2
a) Ta có: \(\sqrt{a^2-1}=\sqrt{\left(a+1\right)\left(a-1\right)}\)
Để \(\sqrt{a^2-1}\) có nghĩa thì \(\left(a+1\right)\left(a-1\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}a+1\le0\\a-1\ge0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a\le-1\\a\ge1\end{cases}}\)