K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2022

 

.

 

5 tháng 7 2022

undefined

AH
Akai Haruma
Giáo viên
24 tháng 1 2017

Lời giải:

Ta có \(y'=3x^2-6mx+3(m+6)=0\) có hai nghiệm $x_1,x_2$ chính là hoành độ hai cực trị của đồ thị hàm số. Theo hệ thức Viet:

\(\left\{\begin{matrix} x_1+x_2=2m\\ x_1x_2=m+6\end{matrix}\right.(1)\)

Gọi đường thẳng qua hai điểm cực trị có PT \((d):y=ax+b\)

Ta có: \(\left\{\begin{matrix} y_1=ax_1+b=x_1^3-3mx_1^2+3(m+6)x_1+1\\ y_2=ax_2+b=x_2^3-3mx_2^2+3(m+6)x_2+1\end{matrix}\right.\)

Dựa vào $(1)$ và biến đổi đơn giản:

\(\Rightarrow a(x_1-x_2)=(x_1-x_2)[x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)]\)

\(\Rightarrow a=x_1^2+x_1x_2+x_2^2-3m(x_1+x_2)+3(m+6)=-2m^2+2m+12\)

\(\Rightarrow 2b=y_1+y_2-a(x_1+x_2)=2m^2+12m+2\Rightarrow b=m^2+6m+1\)

Do đó PTĐT thu được: \((d):y=(-2m^2+2m+12)x+m^2+6m+1\)

25 tháng 7 2018

Có thể xem hoàn chỉnh k ạ vì bị cắt

9 tháng 7 2021

Chứng minh công thức tổng quát phương trình đi qua 2 điểm cực trị:

giả sử hàm bậc 3: \(y=ax^3+bxx^2+cx+d\left(a\ne0\right)\) có 2 điểm cực trị x1;x2

Ta đi tìm số dư 1 cách tổng quát: 

Ta có: \(y'=3ax^2+2bx+c-và-y''=6ax+b\) 

Xét phép chia giữa y' và y'' ta có: \(y=y'\left(\dfrac{1}{3}x+\dfrac{b}{9a}\right)+g\left(x\right)\left(1\right)\) là phường trình đi qua 2 điểm cực trị của đồ thị hàm số bậc 3

từ (1) Ta có: \(y=y'\dfrac{3ax+b}{9a}+g\left(x\right)-hay-y=y'\dfrac{6ax+2b}{18a}g\left(x\right)\) 

Từ đây dễ suy ra: \(g\left(x\right)=y-\dfrac{y'.y''}{18a}\left(công-thức-tổng-quát\right)\) ( dĩ nhiên bạn chỉ cần nhớ cái này ) 

áp dụng vào bài toán ta có: 

\(2x^3+3\left(m-1\right)x^2+6m\left(1-2m\right)x-\left(6x^2+6\left(m-1\right)x+6m\left(1-2m\right)\right).\dfrac{12x+6\left(m-1\right)}{18.2}\)

Gán:  \(\left\{{}\begin{matrix}x=i\\m=10\end{matrix}\right.\) => 1710-841i

\(\Rightarrow y=4m\left(-2m-1\right)x+17m^2+m\) bài toán quay trở về bài toán đơn giản bạn giải nốt là oke

 

 

 

9 tháng 7 2021

Khiếp học ghê như vầy bảo dạy người ta thì kêu thôi, sợ sót kiến thức :)))?

21 tháng 3 2023

TXĐ: D = R

\(y'=3x^2-6x=0\) \(\Rightarrow\left[{}\begin{matrix}x=0\Rightarrow y=1\\x=2\Rightarrow y=-3\end{matrix}\right.\)

Suy ra 2 điểm cực trị của đồ thị là: A(0; 1) và B(2; -3)

Ptđt đi qua 2 điểm cực trị:

\(\dfrac{x}{2}=\dfrac{y-1}{-4}\) \(\Rightarrow-2x=y-1\) \(\Leftrightarrow y=-2x+1\left(d'\right)\)

Vì \(d\perp d'\) \(\Rightarrow\left(2m-1\right)\cdot\left(-2\right)=-1\) \(\Leftrightarrow m=\dfrac{3}{4}\)

Chọn B

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Baif 1:

$y'=3x^2-3=0\Leftrightarrow x=\pm 1$

$x=1\Rightarrow y=-3$

$x=-1\Rightarrow y=1$

Vậy hai điểm cực trị của ĐTHS $y=x^3-3x-1$ là $A(1,-3); B(-1,1)$

$\overrightarrow{AB}=(-2, 4)\Rightarrow \overrightarrow{n_{AB}}=(4,2)$

PTĐT đi qua 2 điểm cực trị $A,B$ là:

$4(x-1)+2(y+3)=0$

$\Leftrightarrow 2x+y+1=0$

AH
Akai Haruma
Giáo viên
24 tháng 9 2020

Bài 2:

$y'=3x^2-3=0\Leftrightarrow x=\pm 1$

$y(1)=-1$

$y(-1)=3$

Vậy ĐTHS có 2 điểm cực trị $A(1,-1)$ và $B(-1,3)$

$\overrightarrow{AB}=(-2,4)\Rightarrow (4,2)

PTĐT $AB$: $4(x-1)+2(y+1)=0$

$\Leftrightarrow 2x+y-1=0$

d(O,AB)=\frac{|2.0+0-1|}{\sqrt{2^2+1^2}}=\frac{1}{\sqrt{5}}$
$S_{OAB}=\frac{d(O,AB).AB}{2}=\frac{1}{2\sqrt{5}}.\sqrt{(-2)^2+4^2}=1$ (đơn vị diện tích)