K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

pt đường thẳng (AB)d: (x+1)-3(y-2)=x-3y+7=0

đường thẳng (d1) qua M// AB => d1//d

đảm bảo yêu cầu đầu bài

d1: (x-2)-3(x-5)=x-3y+13=0

5 tháng 6 2017

Có hai trường hợp:
Th1. d đi qua \(M\left(2;5\right)\) và song song với đường thẳng AB.
Một vtcp\(\overrightarrow{v_d}=\overrightarrow{AB}\left(6;2\right)=2\left(3;1\right)\).
Phương trình đường thẳng d là: \(3\left(x-2\right)+1\left(y-5\right)=0\)\(\Leftrightarrow3x+y-11=0\).
Th2. d đi qua \(M\left(2;5\right)\) và trung điểm của AB.
Gọi I là trung điểm của AB.
\(x_I=\dfrac{-1+5}{2}=2;y_I=\dfrac{4+2}{2}=3\).
Vậy \(I\left(2;3\right)\).
Một véc tơ chỉ phương của d là: \(\overrightarrow{MI}=\left(0;-2\right)\).
Phương trình đường thẳng d là: \(0\left(x-2\right)-2\left(y-5\right)=0\)\(\Leftrightarrow y=5\).

NV
30 tháng 5 2020

d/Do d qua Q, gọi phương trình d có dạng:

\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\) với \(a^2+b^2\ne0\)

d cách C một đoạn bằng 3 nên:

\(d\left(C;d\right)=3\Leftrightarrow\frac{\left|3a+b-2a+2b\right|}{\sqrt{a^2+b^2}}=3\)

\(\Leftrightarrow\left|a+3b\right|=\sqrt{9a^2+9b^2}\)

\(\Leftrightarrow a^2+9b^2+6ab=9a^2+9b^2\)

\(\Leftrightarrow8a^2-6ab=0\Rightarrow\left[{}\begin{matrix}a=0\\4a=3b\end{matrix}\right.\) chọn \(a=3\Rightarrow b=4\)

Có 2 đường thẳng thỏa mãn:

\(\left[{}\begin{matrix}y+2=0\\3x+4y+2=0\end{matrix}\right.\)

NV
30 tháng 5 2020

c/ Gọi M là trung điểm AB \(\Rightarrow M\left(2;3\right)\)

\(\overrightarrow{AB}=\left(6;2\right)=2\left(3;1\right)\)

Đường thẳng d qua P cách đều AB sẽ có 2 trường hợp xảy ra:

TH1: d qua P và M

\(\overrightarrow{MP}=\left(0;2\right)=2\left(0;1\right)\)

\(\Rightarrow\)Đường thẳng d nhận \(\left(1;0\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)+0\left(y-5\right)=0\Leftrightarrow x-2=0\)

TH2: d qua P và song song AB

\(\Rightarrow\)d nhận \(\left(1;-3\right)\) là 1 vtpt

Phương trình d:

\(1\left(x-2\right)-3\left(y-5\right)=0\Leftrightarrow x-3y+13=0\)

3 tháng 2 2021

- Ta có phương trình tham số :

\(\left\{{}\begin{matrix}x=3-t\\y=-5+2t\end{matrix}\right.\) \(\left(t\in R\right)\)

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) Theo giả thiết, hai điểm \(A(1;1)\) và \(B( - 1;0)\) thuộc parabol \(\left( P \right):y = a{x^2} + bx + 3\) nên ta có: \(\left\{ {\begin{array}{*{20}{c}}{a + b + 3 = 1}\\{a - b + 3 = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = \frac{{ - 5}}{2}}\\{b = \frac{1}{2}}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y =  - \frac{5}{2}{x^2} + \frac{1}{2}x + 3.\)

b) Parabol nhận \(x = 1\) làm trục đối xứng nên \( - \frac{b}{{2a}} = 1\,\, \Leftrightarrow \,\,b =  - 2a.\)

Điểm \(M(1;2)\) thuộc parabol nên \(a + b + 3 = 2\,\, \Leftrightarrow \,\,a + b =  - 1.\)

Do đó, ta có hệ phương trình: \(\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b =  - 1}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{a = 1}\\{b =  - 2}\end{array}} \right.} \right.\)

Vậy hàm số cần tìm là: \(y = {x^2} - 2x + 3\)

c) Parabol có đỉnh \(I(1;4)\) nên ta có:

\(\left\{ {\begin{array}{*{20}{c}}{ - \frac{b}{{2a}} = 1}\\{a + b + 3 = 4}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{b =  - 2a}\\{a + b = 1}\end{array}\,\, \Leftrightarrow \,\,} \right.} \right.\left\{ {\begin{array}{*{20}{c}}{a =  - 1}\\{b = 2}\end{array}} \right.\)

Vậy hàm số cần tìm là: \(y =  - {x^2} + 2x + 3.\)

22 tháng 4 2017

Đường tròn tâm O(a,b)

\(\Delta_1\) đi qua \(AB..\Delta_1:\left(x-1\right)-\left(y-2\right)=x-y+1=0\)

\(\Delta_2\) trung trực AB: \(\Delta_2:\left(x-2\right)+\left(y-3\right)=x+y-5=0\)

Tâm (c) phải thuộc \(\Delta_2\) =>O(a,5-a)

Gọi I là điểm tiếp xúc \(\Delta\) và (C) ta có hệ pt

\(\Rightarrow\left\{{}\begin{matrix}OA=OB=\sqrt{\left(a-1\right)^2+\left(5-a-3\right)^2}=R\\OI=\left|3a+\left(5-a\right)-3\right|=\sqrt{10}R\end{matrix}\right.\)

\(\left\{{}\begin{matrix}a^2-2a+1+a^2-4a+4=R^2\\\left(2a+2\right)^2=10R^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a^2-6a+5=R^2\\4a^2+8a+4=10R^2\end{matrix}\right.\)

Lấy [(1) nhân 5] trừ [(2) chia 2]

\(\Leftrightarrow8a^2-32a+23=0\left\{\Delta=16^2-8.23=8.32-8.23=8\left(32-23\right)=2.4.9\right\}\) đề số lẻ thế nhỉ

\(\Rightarrow a=\left[{}\begin{matrix}\dfrac{16-6\sqrt{2}}{8}=2-\dfrac{3\sqrt{2}}{4}\\\dfrac{16+6\sqrt{2}}{8}=2+\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\)

\(\Rightarrow b=\left[{}\begin{matrix}3+\dfrac{3\sqrt{2}}{4}\\3-\dfrac{3\sqrt{2}}{4}\end{matrix}\right.\) \(\Rightarrow R^2=\left[{}\begin{matrix}\dfrac{\left(6-\dfrac{3\sqrt{2}}{2}\right)^2}{10}\\\dfrac{\left(6+\dfrac{3\sqrt{2}}{2}\right)^2}{10}\end{matrix}\right.\)

(C) =(x-2+3sqrt(2)/4)^2 +(y-3-3sqrt(2)/4)^2 =(6-3sqrt(2)/2)^2/10

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

Vì hai đường thẳng \(\Delta \) và d song song với nhau nên ta có thể chọn \(\overrightarrow {{n_\Delta }}  = \overrightarrow {{n_d}}  = \left( {3; - 4} \right)\).

Mặt khác, \(\Delta \) đi qua điểm \(M\left( { - 1;2} \right)\)nên phương trình \(\Delta \) là:

\(3\left( {x + 1} \right) - 4\left( {y - 2} \right) = 0 \Leftrightarrow 3x - 4y + 11 = 0\).

17 tháng 5 2017

Các đường thẳng đều có phương trình dạng \(y=ax+b\). Các đường thẳng song song với nhau đều có cùng một hệ số a. Do đó các phương trình của các đường thẳng song song với đường thẳng \(y=3x-2\) đều có hệ số \(a=3\)

a) Phương trình cần tìm có dạng \(y=3x+b\). Vì đường thẳng đi qua điểm \(M\left(2;3\right)\), nên ta có \(3=3.2+b\Leftrightarrow b=-3\)

Vậy phương trình của đường thẳng đó là \(y=3x-3\)

b) \(y=3x+5\)