K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2019

\(d_1\) : \(x-y+1=0\Rightarrow\overrightarrow{n_{d1}}=\left(1;-1\right)\)

Gọi vtecto pháp tuyến của d là \(\overrightarrow{n_d}=\left(a;b\right)\)

\(cos60^0=\frac{\left|a-b\right|}{\sqrt{1^2+1^2}\sqrt{a^2+b^2}}=\frac{1}{2}\)

\(\Leftrightarrow2\left(a-b\right)^2=a^2+b^2\Leftrightarrow a^2-4ab+b^2=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\left(2+\sqrt{3}\right)b\\a=\left(2-\sqrt{3}\right)b\end{matrix}\right.\)

Chọn \(a=1\Rightarrow\left[{}\begin{matrix}\left(a;b\right)=\left(1;2+\sqrt{3}\right)\\\left(a;b\right)=\left(1;2-\sqrt{3}\right)\end{matrix}\right.\)

Phương trình d: \(\left[{}\begin{matrix}x+\left(2+\sqrt{3}\right)y=0\\x+\left(2-\sqrt{3}\right)y=0\end{matrix}\right.\)

31 tháng 1 2022

Gọi \(I\) là tâm nằm trên đường trung trực \(OA\)

 \(\Rightarrow IA=d\left(I,d\right)\Leftrightarrow\sqrt{\left(x_0+1\right)^2+x^2_0}=\dfrac{\left|-x_0+x_0+1-1\right|}{\sqrt{2}}\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-1\end{matrix}\right.\)

Khi đó: \(\left\{{}\begin{matrix}x_0=0\Rightarrow r=1\\x_0=-1\Rightarrow r=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+\left(y-1\right)^2=1\\\left(x+1\right)^2+y^2=1\end{matrix}\right.\)

 

NV
28 tháng 3 2021

Gọi \(\left(a;b\right)\) là 1 vtpt của d 

\(\overrightarrow{AC}=\left(5;-2\right)\Rightarrow\) đường thẳng AC nhận (2;5) là 1 vtpt

Do góc giữa d và AC bằng 45 độ

\(\Rightarrow cos45^0=\dfrac{1}{\sqrt{2}}=\dfrac{\left|2a+5b\right|}{\sqrt{2^2+5^2}.\sqrt{a^2+b^2}}\)

\(\Leftrightarrow29\left(a^2+b^2\right)=2\left(2a+5b\right)^2\)

\(\Leftrightarrow21a^2-40ab-21b^2=0\)

\(\Leftrightarrow\left(3a-7b\right)\left(7a+3b\right)=0\)

Chọn \(\left(a;b\right)=\left[{}\begin{matrix}\left(7;3\right)\\\left(3;-7\right)\end{matrix}\right.\)

Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}7\left(x-3\right)+3\left(y-5\right)=0\\3\left(x-3\right)-7\left(y-5\right)=0\end{matrix}\right.\)

NV
24 tháng 3 2023

a.

Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt

Phương trình d:

\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)

b.

\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)

Tọa độ H là nghiệm của hệ:

\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)

c.

M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'

Theo công thức trung điểm:

\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)

26 tháng 3 2023

Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?

AH
Akai Haruma
Giáo viên
30 tháng 6 2023

Lời giải:
Gọi PTĐT $(d)$ có dạng $ax+by+c=0$

Vì $A\in (d)$ nên $a.1+b.1+c=a+b+c=0(1)$

VTPT của $(d)$ là $(a,b)$. VTPT của $(\Delta)$ là $(-1,5)$

Góc giữa $(d)$ và $(\Delta)$:

\(\cos 45^0=\frac{|-a+5b|}{\sqrt{(-1)^2+5^2}.\sqrt{a^2+b^2}}=\frac{|-a+5b|}{\sqrt{26(a^2+b^2)}}=\frac{\sqrt{2}}{2}\)

$\Rightarrow 12a^2=12b^2-10ab$
$\Leftrightarrow 6a^2-6b^2+5ab=0$
$\Leftrightarrow (3a-2b)(2a+3b)=0$
$\Rightarrow 3a=2b$ hoặc $2a+3b=0$

Nếu $a=\frac{2}{3}b$ thì:

$ax+by+c=\frac{2}{3}bx+by+(-a-b)=\frac{2}{3}bx+by-\frac{5}{3}b=0$

$\Leftrightarrow \frac{2}{3}x+y-\frac{5}{3}=0$ 

$\Leftrightarrow 2x+3y-5=0$ 

Đây là 1 PT cần tìm 

TH $a=\frac{-3b}{2}$ làm tương tự.

a: vecto AB=(6;-4)

PTTS là:

x=-6+6t và y=3-4t

b: Vì (d) vuông góc AB nên (d) có VTPT là (3;-2)

Phương trình(d) là:

3(x-3)+(-2)(y-2)=0

=>3x-9-2y+4=0

=>3x-2y-5=0

a: Vì (d)//x-4y+5=0 nên (d): x-4y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+1=0

=>c=-1

=>x-4y-1=0

b: Vì (d) vuông góc x-4y+5=0

nên (d): 4x+y+c=0

Thay x=1 và y=0 vào (d), ta được:

c+4=0

=>c=-4

=>4x+y-4=0