Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GỌI ĐƠN THỨC PHẢI TÌM LÀ\(ax^py^q\left(p,q\in N\right)\)
ta có \(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.ax^py^q;3x^{n+3}y^{m-2}=\frac{2}{5}ax^{n+p}y^{2+q}\)
suy ra \(3=\frac{2}{5}a\Rightarrow a=3:\frac{2}{5}=\frac{15}{2}=7\frac{1}{2}\)
\(n+3=n+p\)
\(\Rightarrow p=3\)
\(m-2=2+q\)
\(\Rightarrow q=m-2-2=m-4\left(q\in n,vớim\in N,m>4\right)\)
vậy đơn thức cần tìm là\(7\frac{1}{2}x^3y^{m-4}\)và ta có\(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.7\frac{1}{2}x^3y^{m-4}\)
Gọi đơn thức phải tìm là: \(ax^py^q\left(p,q\in N\right).\)Ta có:
\(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.ax^py^q;3x^{n+3}y^{m-2}=\frac{2}{5}ax^{n+p}y^{2+q}\)
\(\Rightarrow3=\frac{2}{5}a\Rightarrow a=3:\frac{2}{5}=\frac{15}{2}=7\frac{1}{2}\)
\(n+3=n+p\Rightarrow p=3\)
\(m-2=2+q\Rightarrow q=m-2-2=m-4\left(q\in Nvi-m\in Nva-m>4\right)\)
Vậy đơn thức phải tìm là \(7\frac{1}{2}x^3y^{m-4}\)và ta có \(3x^{n+3}y^{m-2}=\frac{2}{5}x^ny^2.7\frac{1}{2}x^3y^{m-4}\)
\(3x^{n+3}.y^{m-2}=\left(\frac{2}{5}.x^ny^2\right).\left(\frac{15}{2}x^3y^{m-4}\right)\)
Bài 1 : biến x^4y^3tz^4
Bài 2 :
Theo bài ra ta có a > 0
cạnh còn lại là 2a
Theo định lí Pytago \(a^2+2a^2=3a^2\)
Vậy bình phương cạnh huyền là 3a^2
1) Phần biến của đơn thức đã cho là \(xy^3xtz^4x^2\)
2) Độ dài cạnh góc vuông còn lại là \(2a\)
Theo định lý Py-ta-go, ta có bình phương cạnh huyền bằng \(a^2+\left(2a\right)^2=a^2+4a^2=5a^2\)
3) \(4mx^{2n+5}y^{m-1}=\left(\frac{4}{3}x^ny^3\right).\left(3mx^{n+5}y^{m-4}\right)\)