Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BPT xác định khi x + 1 ≠ 0 ⇔ x ≠ –1.
Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{–1}
Điều kiện của (1) và điều kiện của (2) là
Hai bất phương trình đã cho không tương đương với nhau vì có x = -1 là một nghiệm của (1) nhưng không là nghiệm của (2).
Nhận xét:Phép biến đổi đồng nhất làm mở rộng tập xác định, dẫn tới thay đổi điều kiện của phương trình, do đó có thể làm xuất hiện nghiệm ngoại lai.
Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{0; –1}
Bất phương trình (1) :
Đkxđ: \(\left(x-1\right)\left(x-2\right)\ge0\)\(\Leftrightarrow\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
Bất phương trình (2):
Đkxđ: \(\left\{{}\begin{matrix}x-1\ge0\\x-2\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\ge2\end{matrix}\right.\)\(\Leftrightarrow x\ge2\).
Vậy hai bất phương trình không tương đương.
BPT xác định khi
Vậy tập giá trị của x thỏa mãn điều kiện xác định là D = R\{–2; 1; 2; 3}
Điều kiện là x tùy ý.