Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
Giá trị tuyệt đối của một số hữu tỉ x, kí hiệu là |x|, được xác định như sau:
\(2.\)
+ Nhân hai lũy thừa cùng cơ số :
\(a^m.a^n=a^{m+n}\)
+ Chia hai lũy thừa cùng cơ số :
\(a^m:a^n=a^{m-n}\left(a\ne0;m\ge n\right)\)
+ Lũy thừa của lũy thừa :
\(\left(x^m\right)^n=x^{m.n}\)
+ Lũy thừa của một tích :
\(\left(x.y\right)^n=x^n.y^n\)
+ Lũy thừa của một thương :
\(\left(\frac{x}{y}\right)^n=\frac{x^n}{y^n}\left(y\ne0\right)\)
5/
- Nếu đại lượng y liên hệ với đại lượng x theo công thức y=xk ( với k là hằng số khác 0 ) thì ta nói y tỉ lệ thuận với x theo hệ số tỉ lệ là k .
* Tính chất của hai đại lượng tỉ lệ thuận là :
- Nếu hai đại lượng tỉ lệ thuận với nhau thì :
- Tỉ số hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
- Tỉ số hai giá trị bất kì của đại lượng này bằng tỉ số hai giá trị tương ứng của đại lượng kia .
* Tính chất của hai đại lượng tỉ lệ nghịch là :
- Nếu hai đại lượng tỉ lệ nghịch với nhau thì :
- Tích hai giá trị tương ứng của chúng luôn không đổi và bằng hệ số tỉ lệ .
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo tỉ số hai giá trị tương ứng của đại lượng kia .
Ta thấy: \(\dfrac{{0,5}}{{2,5}} = \dfrac{1}{5} = \dfrac{{1,5}}{{7,5}} = \dfrac{2}{{10}} = \dfrac{{2,5}}{{12,5}}\) nên x và y là 2 đại lượng tỉ lệ thuận.
Công thức liên hệ: \(x = \dfrac{1}{5}.y\) (hay y = 5.x)
Thì ví dụ như là diện tích hình chữ nhật sẽ tỉ lệ thuận với chiều dài và chiều rộng, chiều dài hcn và chiều rộng hcn sẽ tỉ lệ nghịch với nhau
S=a*b
Hằng đó thì ví dụ như là số avorago là 6*1023
1, Công thức
Hai đại lượng tỉ lệ nghịch x và y liên hệ với nhau bởi công thức y = axax, với a là một số khác 0. Ta nói y tỉ lệ nghịch với x theo hệ số tỉ lệ a
2. Tính chất
- Tích của một giá trị bất kì của đại lượng này với giá trị tương ứng của đại lượng kia tương ứng của đại lượng kia luôn là một hằng số (bằng hệ số tỉ lệ).
x1y1 = x2y2 = x3y3 = …= a
- Tỉ số hai giá trị bất kì của đại lượng này bằng nghịch đảo của tỉ số hai giá trị tương ứng của đại lượng kia.
x1x2=y2y1;x1x3=y3y1x1x2=y2y1;x1x3=y3y1; .....
Bn tham khảo trong phần lí thuyết của HOC24 nhe!