Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1, theo mình thì tìm số lần xuất hiện của các số từ 1 đến 9,sau đó cộng các chữ số lại rồi chia 3 dư 2
=>ko phải là scp
b2,
28+211+2n=2304+2n là số chính phương
mà 2304 chia hết cho 3=>2n chia 3 dư 1
<=>2n=22k=4k
<=>2304+4k là số chính phương
đặt 2304+4k=a2
<=>(a-2k)(a+2k)=2304
đến đây thì dễ rồi
Bài 2:
Mình áp dụng cách trong thi casio nhé;
\(2^8+2^{11}+2^n=2034+2^n.\)
Đặt \(2034+2^n=y^2\Leftrightarrow2^n=\left(y-48\right)\left(y+48\right)\)
Đặt \(2^n=2^{p.q}\left(p>q\right)\)
\(\Leftrightarrow2^p=y+48;2^q=y-48\)
\(\Leftrightarrow2^p-2^q=96\Leftrightarrow2^q.\left(2^{p-q}-1\right)=2^5.3\)
\(\Rightarrow q=5,p=7\Rightarrow q+p=n=12\)
Vậy n=12
Xét tổng:
+) Hỏi rằng các số: \(1^2;2^2;3^2;...;1982^2\) viết liền nhau và xếp theo một thứ tự nào đó thì có phải là số chính phương
Xét \(1^2+2^2+3^2+4^2+...+1982^2\)
\(=\frac{1982.\left(1982+1\right)\left(2.1982+1\right)}{6}\)
\(=991.661.3695\)
Ta có: \(9+9+1=19;1+9=10;1+0=1\)
\(661=6+6+1=13;1+3=4\)
\(3695=3+6+9+5=23;2+3=5\)
Và \(1.4.5=20;2+0=2\)
=> Số gốc của tổng \(1^2+2^2+3^2+4^2+...+1982^2\) bằng 2 khác 1; 4; 9; 7
=> \(1^2;2^2;3^2;...;1982^2\) có viết thành bất kì một thứ tự nào nữa cũng ko là số chính phương
Gọi số phải tìm là abcd = n²
=> số viết theo thứ tự ngược lại là dcba = m² với m,n là các số tự nhiên và m>n
Do abcd và dcba đều ≤ 9999 và ≥ 1000 nên:
1000 ≤ m², n² ≤ 9999 => 32 ≤ m,n ≤ 99 (vì m,n € N)
abcd và dcba đều chính phương nên: a,d € {1,4,6,9} (các số cp tận cùng chỉ có thể là 1,4,6 hoặc 9) và a<d (♣)
Do dcba chia hết cho abcd nên: m² chia hết cho n² hay m chia hết cho n.
Đặt m = k.n với k € N và k ≥ 2: dcba = k². abcd
Ta có:
m = k.n ≤ 99
32 ≤ n
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3
Như vậy: k = 2 hoặc 3
+Nếu k = 2 thì: dcba = 4.abcd (♥)
Theo (♣) a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với (♣) đc: d= 4 hoặc d =6
Với d=4: (♥) <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: (♥) <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd (♦)
a chỉ có thể là 1 và d = 9. Khi đó: (♦) <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
Mình tìm hiểu thì biết số chính phương là số bình phương của 1 số nguyên.
2 số cần tìm :
9801 = 99^2
và 1089 = 33^2
điền hết dấu cộng vào ta được: 1+2+3+4+5+6+7+8+9=45
nếu thay +a thành -a thì giá trị của tổng giảm đi 2a (chẵn)
do vậy tổng cuối luôn là 1 số lẻ, mà 10 là số chẵn nên không có phép thay nào thỏa mãn
Bài này làm như sau :
- Các số ở hàng chục nghìn là : 1 , 2 , 3 , 4 , 5
- xét 5 là số hàng chục nghìn thì ta được 1 số thỏa mãn
-xét 4 là số hàng chục nghìn thì ta có 5 số thỏa mãn
-xét 3 là số hàng chục nghìn thì ta có 25 số thỏa mãn
- xét 2 số hàng nghìn thì ta có 125 số thỏa mãn
- xét 1 là số hàng trăm thì ta được 625 số thỏa mãn
Ta lấy 1 + 5 + 25 + 125 + 625 = 781
Vậy ta có 781 số thỏa mãn yêu cầu của bài