K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

( 1/2 + x )2 = ( 1/2 )2 + 2.1/2.x + x2 = x2 + x + 1/4

( 2x + 1 )2 = ( 2x )2 + 2.2x.1 + 12 = 4x2 + 4x + 1

4 tháng 3 2018

a) \(\frac{1}{5}xy\left(x-y\right)+2\left(y^2x+xy^2\right)\)

\(=\frac{1}{5}x^2y-\frac{1}{5}xy^2+2y^2x+2xy^2\)

\(=\frac{1}{5}x^2y-xy^2\left(\frac{1}{5}-2-2\right)\)

\(=\frac{1}{5}x^2y-\frac{-19}{5}xy^2\)

+) BẬC CỦA ĐƠN THỨC: 3

B) \(3x^2yz-4xy^2z^2-\left(xyz+x^2y^2z^2\right)\left(a+1\right)\)

\(3x^2yz-4xy^2z^2-\left(a+1\right)xyz-\left(a+1\right)x^2y^2z^2\)

+) BẬC CỦA ĐƠN THỨC: 6

CHÚC BN HỌC TỐT!!!!

4 tháng 3 2018
bạn giải chi tiết hơn dc k
24 tháng 6 2016

a) \(2x^2+2b^2=x^2+b^2+x^2+b^2=x^2+2xb+b^2+x^2-2xb+b^2=\left(x+b\right)^2+\left(x-b\right)^2\)

5 tháng 9 2020

B1:

Vì \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y-\frac{1}{3}\right|\ge0\\\left|4z+5\right|\ge0\end{cases}\left(\forall x,y,z\right)}\Rightarrow\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\ge0\left(\forall x,y,z\right)\)

Mà theo đề bài, \(\left|x-\frac{1}{2}\right|+\left|2y-\frac{1}{3}\right|+\left|4z+5\right|\le0\) nên dấu "=" xảy ra khi:

\(\left|x-\frac{1}{2}\right|=\left|2y-\frac{1}{3}\right|=\left|4z+5\right|=0\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{6}\\z=-\frac{5}{4}\end{cases}}\)

5 tháng 9 2020

B2:

a) Nếu \(x< 1\) => \(A=1-x+x+3=4\)

Nếu \(x\ge1\) => \(A=x-1+x+3=2x+2\)

b) Nếu \(x< -\frac{3}{2}\) => \(B=2x+2x+3=4x+3\)

Nếu \(x\ge-\frac{3}{2}\) => \(B=2x-2x-3=-3\)

b: \(3^4\cdot3^5:\dfrac{1}{27}==3^9\cdot3^3=3^{12}\)

6 tháng 8 2015

a) D = 4x^2 + 4xy + 5xy + 5y^2 - 4x^2 = 5y^2 + 9xy

 

26 tháng 6 2022

D=-xy+5y^2

19 tháng 2 2018

Đặt \(A\left(x\right)=\left(x^4+4x^2-5x+1\right)^{2017}.\left(2x^4-4x^2+4x-1\right)^{2018}\)

Gọi đa thức A(x) sau khi bỏ dấu ngoặc là : 

\(A\left(x\right)=a_{32280}x^{32280}+a_{32279}x^{32279}+....+a_1x+a_0\)

Ta thấy tổng giá trị các hệ số của đa thức \(a_{32280}+a_{32279}+...+a_1+a_0\)chính là giá trị của đa thức tại \(x=1\)

Ta có \(A\left(1\right)=\left(1^4+4.1^2-5.1+1\right)^{2017}.\left(2.1^4-4.1^2+4.1-1\right)^{2018}=0\)

Vì \(A\left(1\right)=0\)nên \(a_{32280}+a_{32279}+...+a_1+a_0=0\)

Vậy tổng các hệ số của đa thức sau khi bỏ dấu ngoặc bằng  0