Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk ko hỉu cái đề của bn: Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu ♥
Có phải bằng Dạng 4,5: Lập phương của 1 tổng và lập phương của một hiệu là yo
a) ta có : \(-x^3+3x^2-3x+1=1-3.1^2.x+3.1.x^2-x^3=\left(1-x\right)^3\)
b) ta có : \(64-48x+12x^2-x^3=4^3-3.4^2x+3.4.x^2-x^3=\left(4-x\right)^3\)
Ta có: a/ -x3+3x2-3x+1 = -(x3-3x2+3x-1)
= -(x-1)3
b/ 64-48x+12x2-x3 = 43-3.42.x+3.a.x2-x3
= (4-x)3
a) Ta có: \(x^3+12x^2+48x+64\)
\(=x^3+3\cdot x^2\cdot4+3\cdot x\cdot4^2+4^3\)
\(=\left(x+4\right)^3\)
b) Ta có: \(x^3-12x^2+48x-64\)
\(=x^3-3\cdot x^2\cdot4+3\cdot x\cdot4^2-4^3\)
\(=\left(x-4\right)^3\)
c) Ta có: \(8x^3+12x^2y+6xy^2+y^3\)
\(=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3\)
\(=\left(2x+y\right)^3\)
d)Sửa đề: \(x^3-3x^2+3x-1\)
Ta có: \(x^3-3x^2+3x-1\)
\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)
\(=\left(x-1\right)^3\)
e) Ta có: \(8-12x+6x^2-x^3\)
\(=2^3-3\cdot2^2\cdot x+3\cdot2\cdot x^2-x^3\)
\(=\left(2-x\right)^3\)
f) Ta có: \(-27y^3+9y^2-y+\frac{1}{27}\)
\(=\left(\frac{1}{3}\right)^3+3\cdot\left(\frac{1}{3}\right)^2\cdot\left(-3y\right)+3\cdot\frac{1}{3}\cdot\left(-3y\right)^{^2}+\left(-3y\right)^3\)
\(=\left(\frac{1}{3}-3y\right)^3\)
\(a,=\left(x+1\right)^2\\ b,=\left(3x-y\right)^2\\ c,=\left(x-3\right)\left(x+3\right)\\ d,=\left(x+4\right)^3\\ e,=\left(x-2\right)^3\\ f,=\left(x+2\right)\left(x^2-2x+4\right)\\ g,=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(x^3+12x^2+48x+64=x^3+3.x^2.4+3.x.4^2+4^3=\left(x+4\right)^3\)
\(x^3-6x^2+12x-8=x^3-3.x^2.2+3.x.2^2-2^3=\left(x-2\right)^3\)
A
Chọn A