Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)
b, \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3+2z\right)\left(y-3-2z\right)=\left(y-3\right)^2-\left(2z\right)^2\)
c, \(\left(x-y-6\right)\left(x+y-6\right)=\left(x-6-y\right)\left(x-6+y\right)=\left(x-6\right)^2-y^2\)
d, \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z+x\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
a . \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)
b . \(\left(x-y+6\right)\left(x+y-6\right)=x^2-\left(y-6\right)^2\)
c . \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3\right)^2-\left(2z\right)^2\)
d . \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)
bài 1:
a) x2 + 10x + 26 + y2 + 2y
= (x2 + 10x + 25) + (y2 + 2y + 1)
= (x + 5)2 + (y + 1)2
b) z2 - 6z + 5 - t2 - 4t
= (z - 3)2 - (t + 2)2
c) x2 - 2xy + 2y2 + 2y + 1
= (x2 - 2xy + y2) + (y2 + 2y + 1)
= (x - y)2 + (y + 1)2
d) 4x2 - 12x - y2 + 2y + 1
= (4x2 - 12x ) - (y2 + 2y + 1)
= ......................................
ok mk nhé!! 4545454654654765765767587876968345232513546546575675767867876876877687975675
a: \(x^3+\left(2y\right)^3=\left(x+2y\right)\left[x^2-x\cdot2y+\left(2y\right)^2\right]\)
\(=\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
b: \(\left(2x\right)^3-y^3\)
\(=\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
a)x\(^2\)+10x+26+y\(^2\)+2y
=(^2+10x+25)+(y^2+2y+1)
=(x+5)^2+(y+1)^2
a. x2 + 10x + 26 + y2 + 2y
= x2 + 10x + 25 + y2 + 2y + 1
= (x + 5)2 + (y + 1)2 (Xem lại đề)
b. z2 - 6z + 5 - t2 - 4t
= z2 - 6z + 9 - t2 - 4t - 4
= (z - 3)2 - (t2 + 4t + 4)
= (z - 3)2 - (t + 2)2
c. (y + 2z - 3).(y - 2z - 3)
= (y - 3 + 2z).(y - 3 - 2z)
= (y - 3)2 - (2z)2
d. (x + 2y + 3z).(2y + 3z - x)
= (2y + 3z + x).(2y + 3z - x)
= (2y + 3z)2 - x2
(x + 2y + 3z + 1)^3 = x^3 + 6x^2y + 9x^2z + 3x^2 + 12xy^2 + 36xyz + 18xz + 8y^3 + 24y^2z + 12yz + 27z^2 + 9z + 1
1.
\({x^3} - 8 = {x^3} - {2^3} = \left( {x - 2} \right)\left( {{x^2} + 2x + 4} \right)\)2.
\(\begin{array}{l}\left( {3x - 2y} \right)\left( {9{x^2} + 6xy + 4{y^2}} \right) + 8{y^3}\\ = \left( {3x - 2y} \right)\left[ {{{\left( {3x} \right)}^2} + 3x.2y + {{\left( {2y} \right)}^2}} \right] + 8{y^3}\\ = {\left( {3x} \right)^3} - {\left( {2y} \right)^3} + 8{y^3}\\ = 27{x^3} - 8{y^3} + 8{y^3}\\ = 27{x^3}\end{array}\)