Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thm khao :
https://hoc247.net/toan-11/bai-6-on-tap-chuong-3-vecto-trong-khong-gian-quan-he-vuong-goc-trong-khong-gian-l6419.html
Ta dùng sơ đồ hình cây để mô tả như sau:
Theo sơ đồ hình cây, ta có:
a) \(P\left( {A\overline B } \right) = 0,92.0,12 = 0,1104\)
b) \(P\left( {\overline A B} \right) = 0,08.0,88 = 0,0704\)
c) \(P\left( {\overline A \overline B } \right) = 0,08.0,12 = 0,0096\)
\(P\left( {A \cup B} \right) = 1 - P\left( {\overline A \overline B } \right) = 1 - 0,0096 = 0,9904\)
Hiện tại sách là chương trình mới những vẫn không có PowerPoint bạn nha. Nên hiện tại chưa biết được khi nào sẽ có PowerPoint, nhưng ở các lớp dưới thì cũng đã học rồi á bạn.
Theo chương trình sgk mới thì lớp 7, lớp 8 có học PowerPoint. Lớp 11 thì chưa có em nhé!
Chọn D
Nhóm có tất cả 9 học sinh nên số cách xếp 9 học sinh này ngồi vào một hàng có 9 ghế là 9! = 362880(cách).
Vậy số phần tử không gian mẫu là n ( Ω ) = 362880
Đặt biến cố A: “ 3 học sinh lớp không ngồi ghế liền nhau”.
Giả sử học sinh lớp 10 ngồi 3 ghế liền nhau. Ta xem 3 học sinh này là một nhóm
+/ Xếp X và 6 bạn còn lại vào ghế có 7! cách xếp.
+/ Ứng với mỗi cách xếp ở trên, có 3! cách xếp các bạn trong nhóm X.
Vậy theo quy tắc nhân ta có số cách xếp là: 7!.3! = 30240 (cách).
Suy ra số cách xếp để học sinh lớp không ngồi cạnh nhau là (cách) .
Vậy xác suất để học sinh lớp 10 không ngồi cạnh nhau là 362880 - 30240 = 332640 (cách)
=> n(A) = 332640
Vậy xác suất để học sinh lớp 10 không ngồi cạnh nhau là
Do mỗi học sinh lớp 12 ngồi giữa hai học sinh khối 11 nên ở vị trí đầu tiên và cuối cùng của dãy ghế sẽ là học sinh khối 11.
Bước 1: Xếp 6 học sinh lớp 11 thành một hàng ngang, có 6! cách.
Bước 2: giữa 6 bạn học sinh lớp 11 có 5 khoảng trống, chọn 3 khoảng trống trong 5 khoảng trống để xếp các bạn lớp 12, có cách( có liên quan đến thứ tự).
Theo quy tắc nhân có cách xếp thỏa yêu cầu.
Chọn C.
Chọn 3 học sinh lớp 12 có cách
Chọn 1 học sinh lớp 11 có cách
Chọn 1 học sinh lớp 10 có cách.
Do đó có cách chọn.
Chọn B.
refer
https://hoc247.net/toan-11/bai-6-on-tap-chuong-3-vecto-trong-khong-gian-quan-he-vuong-goc-trong-khong-gian-l6419.html