Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,Xet tu giac ADHE co;
D la hinh chieu tren AB - HD vuong goc AB- gocADH= 90
E la hinh chieu tren AC - HE vuong goc AC- gocAEH=90
- Goc ADH= AEH =DAE =90
suy ra : Tg ADHE la hinh chu nhat
b, S=AB.AC = 1/2.6.10 =30 cm
a) xét tứ giác ADHE :
có góc ADH =góc HEA =DHE(900)
=)ADHE là HCN (DHNB)
Bạn tự vẽ hình nha:
a)Xét tứ giác AIHK, có:
góc A=90 độ(gt)
góc AIH =90 độ( D,H đx qua AB)
góc AKH=90 độ(H,E đx qua AC)
=> AIHK là hình chữ nhật
b)Vì D,H đx qua AB nên AB là đường trung trực của DH
=> AD=AH (1)
Vì H,E đx qua AC nên AC là đường trung trực của HE
=> AH=AE(2)
Từ (1) và (2) => AD=AE(*)
Tam giác ADH cân tại A (AH=AD) có AB là đtt nên AB cũng là đường phân giác, đường cao, đường trung tuyến
=> góc DAH=\(2.A_2\)
Tam giác AHE cân tại A (AH=AE) có AC là đtt nên AC cũng là đường phân giác, đường cao, đường trung tuyến
=> góc HAE=\(2.A_3\)
Ta có: góc DAH +góc HAE=\(2.A_2+2.A_3=2\left(A_2+A_3\right)=2.90\text{đ}\text{ộ}=180\text{đ}\text{ộ}\)
hay góc DAE=180 độ => 3 điểm D,A,E thẳng hàng (**)
Từ (*) và (**) => D,E đx qua A (đpcm)
c) Xét tam giác AIH và tam giác AKH, có:
góc AIH= góc AKH=90 độ
AH chung
AI=HK(AIHK là hcn)
=> tam giác AIH=tam giác AKH(ch_cgv)(3)
Xét tam giác ADI và tam giác AHI, có:
\(A_1=A_2\)(AB là p/g của góc DAH)
AI là cạnh chung
góc DIA= góc HIA=90 độ
=> tam giác ADI = tam giác AHI(cgv-gnk)(4)
Chứng minh tương tự, ta được : tam giác AEK= tam giác AHK(cgv-gnk)(5)
Từ (3), (4) và (5) => tam giác AIH=AKH=AKE=AID
Ta có :
\(S_{AIHK}=AI.AH=s\)
=> \(\frac{S_{AIHK}}{2}=S_{AIH}=\frac{s}{2}\)
=> \(S_{DHE}=S_{AIH}+S_{AKH}+S_{AKE}+S_{AID}=4.S_{AIH}\)
\(=4.\frac{s}{2}=2.s\)
Vậy: diện tích \(S_{DHE}=2.s\)
Mình đã làm hưng câu c) khá dài dòng, mình nghĩ rằng nên chứng minh theo cách khác ngắn gọn hơn, bài giải câu c) là dành cho trường hợp không biết làm sao chứng minh tam giác theo cách dài dòng nên bạn nào có cách giải câu c) hay hơn không? mình nghĩ là có các bạn cùng thảo luận nha!
Chúc bạn học thật giỏi nha!!!!!!!!
a: Xét ΔABC có
\(\dfrac{AE}{EB}=\dfrac{AF}{FC}\)
Do đó: EF//BC
Xét tứ giác BEFC có EF//BC
nên BEFC là hình thang
mà \(\widehat{B}=\widehat{C}\)
nên BEFC là hình thang cân
a) Tam giác ABC có MA=MC; NA=NB nên MN là đường trung bình của tam giác ABC
=> MN//BC; MN=1/2BC (1).
Tam giác BGC có PG=BP; QG=QC nên PQ là đường trung bình của tam giác BGC
=> PQ//BC; PQ=1/2BC (2).
từ (1) và (2) suy ra MN//PQ; MN=1/2PQ.
Tứ giác MNPQ có MN//PQ; MN=1/2PQ.
vậy MNPQ là hình bình hành.
b) câu này là dạng tìm điều kiện là dạng khó nhất trong ba dạng là dễ nhất là chứng minh tứ giác là hình gì, mình chỉ cần thuộc lí thuyết dò sẽ ra; tiếp theo là tứ giác này là hình gì, mình phải tự tìm; cuối cùng là dạng tìm điều kiện để trở thành hình khác thì mình phải giả sử một đặc điểm để trở thành hình đó rồi tìm mối tương quan.
c1:Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm Một góc vuông.
Giả sử GÓc N=90 độ
Nối AG. Vì NA=NB;PQ=PB nên NP là đường trung bình của tam giác ABG=> NP//AG
mà NP vuông góc với MN. từ hai điều này suy ra AG cũng vuông góc với MN.
lại có MN//BC(cmt) từ hai điều này lại suy ra AG vuông góc với BC.
tam giác ABC có AG vừa là đường trung tuyến vừa là đường cao nên tam giác ABC cân tại A
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
C2: Để hình bình hành MNPQ là hình chữ nhật, ta cần có thêm hai đuognừ chéo bằng nhau
Giả sử MP=NQ (1)
ta có: MNPQ là hình bình hành nên GN=GQ; GP=GM
G là trọng tâm của tam giác ABC nên BP=1/3BM; CQ=1/3CN. từ hai điều này suy ra: BP=1/2MP; CQ=1/2QN (2)
Từ (1) và (2) suy ra MP+BP=NQ+CQ hay BM=CN
Tam giác ABC có hai đuognừ trung tuyến bằng nhau nên tam giác ABC cân tại A( điều này đã được chứng minh ở lớp 7, bạn không cần chứng minh lại)
Vậy khi tam giác ABC cân tại A thì hình bình hành MNPQ là hình chữ nhật.
Bởi vì cách 2 nó có cái điều mà mình tự cm ở lớp 7 nên nhiều khi không hay
c)Nếu BM và CN vuông góc với nhau hay PM và QN cũng vuông góc với nhau.
Hình bình hành MNPQ có hai đuognừ chéo PM và QN vuông góc với nhau, nên MNPQ là hình thoi,.
Vậy nếu Nếu BM và CN vuông góc với nhau thì MNPQ là hình thoi
đơn giản mak bạn.. vì diện tích các tam giác = nhau và diện tích các tứ giác = nhau.. (ai không biết bảo mjh chứng mjh cho).. giờ kẻ từ tâm hình vuông đến 1 trong 4 đỉnh của hình vuông, nó chia tứ giác thành 2 tam giác mà mỗi tam giác cho diện tích = các tam giác khác, mà 2 tam giác được chia là = nhau lên T/t=2..OK
khó nhỉ !
Ai nghỉ ra giỏi thật !