K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2023

1:

a: Xét ΔOBA và ΔOCA có

OB=OC

AB=AC

OA chung

Do đó: ΔOBA=ΔOCA

=>\(\widehat{OBA}=\widehat{OCA}\)

mà \(\widehat{OBA}=90^0\)

nên \(\widehat{OCA}=90^0\)

=>AC\(\perp\)OC tại C

=>AC là tiếp tuyến của (O)

b: Xét (O) có

ΔBCE nội tiếp

BE là đường kính

Do đó: ΔBCE vuông tại C

=>BC\(\perp\)CE tại C

Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>OA\(\perp\)BC

Ta có: OA\(\perp\)BC

CE\(\perp\)CB

Do đó: OA//CE

2: Gọi giao điểm của EC với BA là K

Ta có: BC\(\perp\)CE tại C

=>BC\(\perp\)EK tại C

=>ΔBCK vuông tại C

Ta có: \(\widehat{ACK}+\widehat{ACB}=\widehat{BCK}=90^0\)

\(\widehat{AKC}+\widehat{ABC}=90^0\)(ΔBCK vuông tại C)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{ACK}=\widehat{AKC}\)

=>AC=AK

mà AC=AB

nên AK=AB(3)

Ta có: CH\(\perp\)BE

BA\(\perp\)BE

Do đó: CH//BA

Xét ΔEBA có MH//BA

nên \(\dfrac{MH}{BA}=\dfrac{EM}{EA}\left(4\right)\)

Xét ΔEAK có MC//AK

nên \(\dfrac{MC}{AK}=\dfrac{EM}{EA}\left(5\right)\)

Từ (3),(4),(5) suy ra MH=MC

=>M là trung điểm của CH

loading...

Bài 9:

a: Xét tứ giác OPMN có

góc OPM+góc ONM=180 độ

=>OPMN là tứ giác nội tiếp

b: \(MN=\sqrt{10^2-6^2}=8\left(cm\right)\)

c: ΔOAB cân tại O

mà OH là đường trung tuyến

nên OH vuông góc AB

Xét tứ giác OHNM có

góc OHM=goc ONM=90 độ

=>OHNM là tứ giác nội tiép

=>góc MHN=góc MON

2 tháng 3 2023

dạ em cảm ơn, làm giúp em bài 8 luôn được ko ạ

9 tháng 11 2021

1, Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=8\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\end{matrix}\right.\)

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\\ \Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}\approx90^0-53^0=37^0\)

2, 

a, Áp dụng HTL: \(\left\{{}\begin{matrix}AD\cdot AB=AH^2\\AE\cdot AC=AH^2\end{matrix}\right.\Rightarrow AD\cdot AB=AE\cdot AC\)

b, \(AD\cdot AB=AE\cdot AC\Rightarrow\dfrac{AD}{AC}=\dfrac{AE}{AB}\Rightarrow\Delta ABC\sim\Delta AED\left(c.g.c\right)\)

21 tháng 12 2021

b: Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-2x-3=-\dfrac{1}{2}x+3\\y=-2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}x=6\\y=-2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=8-3=5\end{matrix}\right.\)

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

b: Xét (O) có

CA,CM là tiếp tuyến

=>CA=CM và OC là phân giác của góc MOA(1)

Xét (O) co

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

CD=CM+MD=CA+DB

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: AC*BD=CM*MD=OM^2=R^2

31 tháng 10 2021

b: Xét ΔMNP vuông tại M có MH là đường cao

nên \(NH\cdot NP=MN^2\left(1\right)\)

Xét ΔMNK vuông tại M có MQ là đường cao

nên \(NQ\cdot NK=MN^2\left(2\right)\)

Từ (1) và (2) suy ra \(NH\cdot NP=NQ\cdot NK\)

Xét (O) có

ΔMEN nội tiếp

MN là đường kính

Do đó: ΔMEN vuông tại E

=>\(\widehat{MEN}=90^0\)

=>\(\widehat{FEN}=90^0\)

Xét tứ giác HFEN có

\(\widehat{FHN}+\widehat{FEN}=90^0+90^0=180^0\)

=>HFEN là tứ giác nội tiếp

=>H,F,E,N cùng thuộc một đường tròn

loading...