Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH vừa là đường trung tuyến vừa là đường phân giác
=>HB=HC và \(\widehat{BAH}=\widehat{CAH}\)
Câu 3:
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Suy ra:HB=HC
b: Ta có: ΔAHB=ΔAHC
nên \(\widehat{BAH}=\widehat{CAH}\)
c: Ta có:ΔABC cân tại A
mà AH là đường cao
nên AH là tia phân giác của góc BAC
a)xét tam giác KHF vuông tại H và tam giác AHF vuông tại H có
FH chung
KH=HA(gt)
=>tam giác KHF=tam giác AHF(2 cạnh góc vuông)
=>FK=FA(cạnh tương ứng)
b)Xét tam giác FMK và tam giác CMB có
FM=MC(M là trung điểm FC)
FMK=CMB(đối đỉnh)
KM=MB(gt)
=>tam giác FMK=tam giác CMB(c-g-c)
=>BC=FK(cạnh tương ứng)
mà FK=FA(câu a)
=>BC=FA
c) xét tam giác AKM có
HM vuông góc với AK(KH vuông góc với FC)
H là trung điểm AK(KH=AK)
=>tam giác AKM cân tại M(dhnb)
=>KM=AK(t/c)
mà M là trung điểm KB(MK=MB)
=>KM=AK=MB
=>tam giác KAB vuông tại A(trung tuyến thuộc cạnh huyền)
=>AB vuông góc với AK(t/c)
mà HM vuông góc với AK(gt)
=>HM//AB
hay FC//AB(đpcm)
Câu 6:
a) Xét ΔABM vuông tại M và ΔACM vuông tại M có
AB=AC(ΔABC cân tại A)
AM chung
Do đó: ΔABM=ΔACM(Cạnh huyền-cạnh góc vuông)
\(A=\dfrac{3}{2\cdot2}=\dfrac{3}{4}\\ A=\dfrac{3}{2\cdot5}=\dfrac{3}{10}\\ A=\dfrac{3}{2\cdot3}=\dfrac{1}{2}\)
Vì BC và Cx là 2 tia đối nên \(\widehat{BCA}\) và \(\widehat{ACx}\) là 2 góc kề bù
\(\Rightarrow\widehat{ACB}+\widehat{ACx}=180^o\)
\(40^o+\widehat{ACx}=180^o\)
\(\widehat{ACx}=140^o\)
b) Ta có:\(\widehat{ACB}+\widehat{ABC}+\widehat{BAC}=180^o\) (tổng 3 góc trong 1 tam giác)
\(40^o+\widehat{ABC}+70^o=180^o\)
\(\widehat{ABC}=70^o\)(1)
Vì Oy là phân giác của \(\widehat{ACx}\) nên \(\widehat{xCy}=\dfrac{\widehat{ACx}}{2}=\dfrac{140^o}{2}=70^o\)(2)
Từ (1),(2) => \(\widehat{ABC}=\widehat{xCy}\)
c)Cặp góc đồng vị là \(\widehat{ABC}\) và \(\widehat{xCy}\)
Cần gấp ạ 😔🥺🥺