K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2019

GIÚP MÌNH VỚI

@camonnn <3

12 tháng 5 2019

DfGnqlD.png

b.

Trên tia đối của MA lấy điểm N sao cho MA=MN.

Kẻ \(DF\perp AM\left(F\in AM\right)\)

Tí nữa tớ hướng dẫn cho

18 tháng 1 2015

Đúng mà thử vẽ hình coi

14 tháng 1 2017

minh chiu

17 tháng 3 2019

Hình đẹp lắm lè 

A H B C D E O K I

kẻ DO _|_ AH tại O 

EI _|_ AH tại I 

có góc OAD + góc BAD + góc BAH = 180 

góc BAD = 90 do AD _|_ AB (gt)

=> góc OAD + góc BAH = 90    (1)

DO _|_ AH (Cách vẽ) => góc DOA = 90

=> góc ODA + góc DAO = 90    (2)

(1)(2) => góc ODA = góc BAH 

xét tam giác ODA và tam giác HAB có : góc BHA = góc DOA = 90

AD = AB (gt)

=> tam giác ODA = tam giác HAB (ch - gn)

=> DO = AH (định nghĩa)       (3)

làm tương tự với tam giác AHC và tam giác EIA 

=> AH = EI     (4)

(3)(4) => DO = EI 

có EI; DO _|_ AH (cách vẽ)=> EI // DO => góc IEK = góc KDO (định lí)

xét tam giác ODK và tam giác IEK có : góc DOK = góc EIK = 90

=> tam giác ODK  = tam giác IEK (cgv - gnk)

=> DK = KE  mà K nằm giữa D và E 

=> K là trung điểm của DE

5 tháng 4 2021

Bạn ơi trường hợp cgv-gnk là góc nào vậy

 

7 tháng 2 2018

Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo bài tương tự tại đây nhé.

Bài 1Cho tam giác ABC có ba góc nhọn, gọi M là trung điểm của BC . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB sao cho AE= AB  . Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC sao cho AD = AC.        a) Chứng minh: BD = CE .        b) Trên tia đối của tia MA lấy N sao cho MN = MA . Chứng minh: tam giác ADE = tam...
Đọc tiếp

Bài 1Cho tam giác ABC có ba góc nhọn, gọi M là trung điểm của BC . Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB sao cho AE= AB  . Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC sao cho AD = AC.

        a) Chứng minh: BD = CE .

        b) Trên tia đối của tia MA lấy N sao cho MN = MA . Chứng minh: tam giác ADE = tam giác CAN .

        c) Gọi I là giao điểm của DE và AM . Chứng minh: AD^2 + IE^2/ DI^2+ AE^2 = 1.

Bài 2 Cho tam giác ABC vuông cân tại A . Gọi M là trung điểm của BC , điểm thuộc đoạn BM (D khác B và M ). Kẻ các đường thẳng BH, CI lần lượt vuông với đường thẳng AD tại H và I .                 

Chứng minh rằng:

a. BH = AI .

b.Góc BAM = góc ACM

c. Tam giác  vuông cân

có vẽ hình. Em cần gấp ạ

0

A B C F M D E

Bài làm

a) Xét tam giác AMB và tam giác FMC có:

AM = MF

\(\widehat{AMB}=\widehat{FMC}\)( hai góc đối nhau )

BM = MC 

=> Tam giác AMB = tam giác FMC ( c.g.c )

=> \(\widehat{BAM}=\widehat{CFM}\)( hai góc t/ứng )

Mà hai góc này so le trong

=> AB // CF

# Học tốt #