K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

a)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=-x^2+4x-3 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

b)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2+2 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

c)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=1/2x^2+x+1 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

 

d)

1. Khởi động phần mềm đã cài đặt hoặc truy cập vào trang web: https://www.geogebra.org để sử dụng phiên bản online

2. Nhập phương trình bậc hai theo cú pháp y=x^2-4x+4 vào vùng nhập lệnh như hình bên

Ta có ngay parabol trên vùng làm việc như hình dưới:

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) Đồ thị hàm số có đỉnh \(I\left( {2; - 7} \right)\)

Trục đối xứng là x=2

Giao điểm của parabol với trục tung là (0;-3)

Điểm đối xứng với điểm (0;-3) qua trục đối xứng x=2 là (4;-3)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) Đồ thị hàm số có đỉnh \(I\left( { - 1;0} \right)\)

Trục đối xứng là x=-1

Giao điểm của parabol với trục tung là (0;1)

Giao điểm của parabol với trục hoành là (-1;0)

Điểm đối xứng với điểm (0;1) qua trục đối xứng x=-1 là (-2;1)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) Đồ thị hàm số có đỉnh \(I\left( {0; - 2} \right)\)

Trục đối xứng là x=0

Giao điểm của parabol với trục tung là (0;-2)

Cho x=1=>y=-3

=> Điểm A(1;-3) thuộc đồ thị.

Điểm đối xứng với A qua trục đối xứng x=0 là điểm B(-1;-3).

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

24 tháng 9 2023

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 3 =  - 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

b)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.( - 1)}} =  - 2;{y_S} =  - {( - 2)^2} - 4.( - 2) + 5 = 9.\)

+ Có trục đối xứng là đường thẳng \(x =  - 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

c) Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = {x^2} - 4x + 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 4)}}{{2.1}} = 2;{y_S} = {2^2} - 4.2 + 5 = 1.\)

+ Có trục đối xứng là đường thẳng \(x = 2\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay lên trên vì \(a = 1 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng 5, tức là đồ thị đi qua điểm có tọa độ (0; 5).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} - 2x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - ( - 2)}}{{2.( - 1)}} =  - 1;{y_S} =  - {( - 1)^2} - 2.( - 1) - 1 = 0\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua gốc tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

24 tháng 9 2023

Tham khảo:

a)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} + 4x - 1\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 4}}{{2.2}} =  - 1;{y_S} = 2.{( - 1)^2} + 4.( - 1) - 1 =  - 3.\)

+ Có trục đối xứng là đường thẳng \(x =  - 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

 

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -1, tức là đồ thị đi qua điểm có tọa độ (0; -1).

Ta vẽ được đồ thị như hình dưới.

b) 

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - {x^2} + 2x + 3\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 2}}{{2.( - 1)}} = 1;{y_S} =  - {1^2} + 2.1 + 3 = 4.\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 1 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 3, tức là đồ thị đi qua điểm có tọa độ (0; 3).

Ta vẽ được đồ thị như hình dưới.

c)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y =  - 3{x^2} + 6x\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 6}}{{2.( - 3)}} = 1;{y_S} =  - {3.1^2} + 6.1 = 3\)

+ Có trục đối xứng là đường thẳng \(x = 1\) (đường thẳng này đi qua đỉnh S và song song với trục Oy);

+ Bề lõm quay xuống dưới vì \(a =  - 3 < 0\)

+ Cắt trục tung tại điểm có tung độ bằng 0, tức là đồ thị đi qua gốc tọa độ (0; 0).

Ta vẽ được đồ thị như hình dưới.

d)

Trong mặt phẳng tọa độ Oxy, đồ thị hàm số bậc hai \(y = 2{x^2} - 5\) là một parabol (P):

+ Có đỉnh S với hoành độ: \({x_S} = \frac{{ - b}}{{2a}} = \frac{{ - 0}}{{2.2}} = 0;{y_S} = {2.0^2} - 5 =  - 5.\)

+ Có trục đối xứng là đường thẳng \(x = 0\) (trùng với trục Oy);

+ Bề lõm quay lên trên vì \(a = 2 > 0\)

+ Cắt trục tung tại điểm có tung độ bằng -5, tức là đồ thị đi qua điểm có tọa độ (0; -5).

Ta vẽ được đồ thị như hình dưới.

23 tháng 9 2023

Tham khảo:

a) \(y = {x^2} - 3x - 4\)

Đồ thị hàm số có đỉnh \(I\left( {\dfrac{3}{2}; - \dfrac{{25}}{4}} \right)\)

Trục đối xứng là \(x = \dfrac{3}{2}\)

Giao điểm của parabol với trục tung là (0;-4)

Giao điểm của parabol với trục hoành là (-1;0) và (4;0)

Điểm đối xứng với điểm (0;-4) qua trục đối xứng \(x = \frac{3}{2}\) là (3;-4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

b) \(y = {x^2} + 4x + 4\)

Đồ thị hàm số có đỉnh \(I\left( { - 2;0} \right)\)

Trục đối xứng là \(x =  - 2\)

Giao điểm của parabol với trục tung là (0;4)

Giao điểm của parabol với trục hoành là I(-2;0)

Điểm đối xứng với điểm (0;4) qua trục đối xứng \(x =  - 2\) là (-4;4)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

c) \(y =  - {x^2} + 2x - 2\)

Đồ thị hàm số có đỉnh \(I\left( {1; - 1} \right)\)

Trục đối xứng là \(x = 1\)

Giao điểm của parabol với trục tung là (0;-2)

Điểm đối xứng với điểm (0;-2) qua trục đối xứng \(x = 1\) là (2;-2)

Vẽ parabol đi qua các điểm được xác định ở trên, ta nhận được đồ thị hàm số:

HQ
Hà Quang Minh
Giáo viên
30 tháng 9 2023

a) \(y =  - {x^2} + 6x - 9\)

Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới.

Đỉnh \(I\left( {3;0} \right).\) Trục đối xứng \(x = 3.\) Giao điểm của đồ thị với trục \(Oy\) là: \(A\left( {0; - 9} \right).\) Parabol cắt trục hoành tại \(x = 3.\)

 

Tập giá trị của hàm số là: \(\left( { - \infty ;0} \right].\)

Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} + 6x - 9\) đồng biến trên khoảng \(\left( { - \infty ;3} \right)\) và nghịch biến trên khoảng \(\left( {3; + \infty } \right).\)

b) \(y =  - {x^2} - 4x + 1\)

Ta có: \(a =  - 1\) nên parabol quay bề lõm xuống dưới.

Đỉnh \(I\left( { - 2;5} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x =  - 2 + \sqrt 5 \) và \(x =  - 2 - \sqrt 5 .\)

Tập giá trị của hàm số là: \(\left( { - \infty ;5} \right].\)

Từ đồ thị ta thấy: Hàm số \(y =  - {x^2} - 4x + 1\) đồng biến trên khoảng \(\left( { - \infty ; - 2} \right)\) và nghịch biến trên khoảng \(\left( { - 2; + \infty } \right).\)

c) \(y = {x^2} + 4x\)

Ta có: \(a = 1 > 0\) nên parabol quay bề lõm lên trên.

Đỉnh \(I\left( { - 2; - 4} \right).\) Trục đối xứng \(x =  - 2.\) Giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;0} \right).\) Giao điểm của hàm số với trục \(Ox\) là: \(x = 0\) và \(x =  - 4.\)

 

Tập giá trị của hàm số là: \(\left[ { - 4; + \infty } \right).\)

Từ đồ thị ta thấy: Hàm số \(y = {x^2} + 4x\) đồng biến trên khoảng \(\left( { - 2; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - 2} \right).\)

d) \(y = 2{x^2} + 2x + 1\)

Ta có: \(a = 2 > 0\) nên parabol quay bề lõm lên trên.

Đỉnh \(I\left( { - \frac{1}{2};\frac{1}{2}} \right).\) Trục đối xứng \(x =  - \frac{1}{2}.\) giao điểm của hàm số với trục \(Oy\) là: \(\left( {0;1} \right).\) Đồ thị hàm số không có giao điểm với trục \(Ox.\) Lấy điểm \(\left( {1;5} \right)\) thuộc đồ thị hàm số, điểm đối xứng với điểm đó qua trục đối xứng \(x =  - \frac{1}{2}\) là: \(\left( { - 2;5} \right).\)

Tập giá trị của hàm số là: \(\left[ {\frac{1}{2}; + \infty } \right).\)

Từ đồ thị ta thấy: Hàm số \(y = 2{x^2} + 2x + 1\) đồng biến trên khoảng \(\left( { - \frac{1}{2}; + \infty } \right)\) và nghịch biến trên khoảng \(\left( { - \infty ; - \frac{1}{2}} \right).\)

17 tháng 5 2017

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

Hàm số bậc hai

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

a) \(y = \frac{1}{{{x^2} - x}}\) xác định \( \Leftrightarrow {x^2} - x \ne 0 \Leftrightarrow \left\{ \begin{array}{l}x \ne 0\\x \ne 1\end{array} \right.\)

Tập xác định \(D = \mathbb{R}\backslash \left\{ {0;1} \right\}\)

b) \(y = \sqrt {{x^2} - 4x + 3} \) xác định \( \Leftrightarrow {x^2} - 4x + 3 \ge 0 \Leftrightarrow \left\{ \begin{array}{l}x \ge 3\\x \le 1\end{array} \right.\)

Tập xác định \(D = \left( { - \infty ;1} \right] \cup \left[ {3; + \infty } \right)\)

c) \(y = \frac{1}{{\sqrt {x - 1} }}\) xác định \( \Leftrightarrow x - 1 > 0 \Leftrightarrow x > 1\)

Tập xác định \(D = \left( {1; + \infty } \right)\)