\(Vẽ\) \(\Delta ABC\) \(có\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2019

a) .....

b and c) ABC là tg cân tại A nên tg ABM=ACM và B đx C qua M= M là điểm thuộc trung trực tg ABC

Nb=Nc => AN là đg cao và trong tg cân thì dg cao = trung trực nên....

16 tháng 11 2019

Hình bạn tự vẽ nha!

a) Xét 2 \(\Delta\) \(ABM\)\(ACM\) có:

\(AB=AC\left(gt\right)\)

\(BM=CM\left(gt\right)\)

Cạnh AM chung

=> \(\Delta ABM=\Delta ACM\left(c-c-c\right).\)

b) Theo câu a) ta có \(\Delta ABM=\Delta ACM.\)

=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng).

=> \(AM\) là tia phân giác của \(\widehat{BAC}\) (1)

Xét 2 \(\Delta\) \(ABN\)\(ACN\) có:

\(AB=AC\left(gt\right)\)

\(BN=CN\) (vì N là trung điểm của \(BC\))

Cạnh AN chung

=> \(\Delta ABN=\Delta ACN\left(c-c-c\right).\)

=> \(\widehat{BAN}=\widehat{CAN}\) (2 góc tương ứng).

=> \(AN\) là tia phân giác của \(\widehat{BAC}\) (2)

Từ (1) và (2) => \(AM,AN\) đều là tia phân giác của \(\widehat{BAC}.\)

=> \(A,M,N\) thẳng hàng.

c) Xét \(\Delta ABC\) có:

\(AB=AC\left(gt\right)\)

=> \(\Delta ABC\) cân tại A.

\(AN\) là đường phân giác (cmt).

=> \(AN\) đồng thời là đường trung trực của \(\Delta ABC.\)

=> \(AN\) là đường trung trực của \(BC.\)

\(A,M,N\) thẳng hàng (cmt).

=> \(MN\) là đường trung trực của \(BC\left(đpcm\right).\)

Chúc bạn học tốt!

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)d)Hãy...
Đọc tiếp

Cho \(\Delta ABC\)có các góc nhỏ hơn \(120^0\).Vẽ ra phía ngoài \(\Delta ABC\)các tam giác đều \(ABD,ACE.\)

a)Gọi \(M\)là giao điểm của \(BE\)và \(CD.\)Chứng minh \(\widehat{AMB}=\widehat{AMC}=\widehat{BMC}.\)

b)Trên tia phân giác của \(\widehat{BMC}\)lấy điểm \(K\)sao cho \(MK=MB+MC\).Chứng minh \(\Delta KBC\)đều.

c)Gọi \(I\)là trung điểm của \(AC,\)\(G\)là trọng tâm của \(\Delta KBC.\)Tính các góc của\(\Delta GID.\)

d)Hãy cho biết khẳng định\("\)nếu \(\widehat{BAC}=\frac{\widehat{AMC}+\widehat{BMC}+\widehat{AMB}}{6}\)thì điểm \(M\)cách đều các cạnh của \(\Delta ABC\)\("\)có đúng không?Vì sao?

e)Trên một nửa mặt phẳng có chứa điểm \(C\) bờ \(AB,\)vẽ  tam giác đều \(ABF.\)Giả sử rằng \(\widehat{BAC}=\widehat{ACB}+\widehat{ABC}\)và \(AB=\frac{1}{2}BC,\)chứng minh \(F\)là trung điểm của \(BC.\)

3
26 tháng 5 2017

bài này khó nhất là hai câu a và c.

26 tháng 5 2017

a) Ta có \(\Delta ADC=\Delta ABE\) (c-g-c) => \(\Rightarrow\widehat{ADC}=\widehat{ABE}\)(2 c t/ứ )

Gọi giao điểm của AB và CD là K

Ta có: \(\widehat{ADK}+\widehat{AKD}+\widehat{DAK}=180^0\) (Đl Py-ta-go)

\(\widehat{BMK}+\widehat{BKM}+\widehat{KBM}=180^0\)(Đl Py-ta-go)

\(\Rightarrow\widehat{BMK}=\widehat{KAD}=60^0\)\(\Rightarrow\widehat{BMC}=120^0\)

Gọi J là trung điểm DM

C/m \(\Delta DJB=\Delta AMB\) rồi c/m được \(\widehat{BMA}=120^0\)

rồi suy ra \(\widehat{AMC}=120^0\) \(\Rightarrow\)\(\widehat{AMB}=\widehat{AMC}=\widebat{BMC}\)

23 tháng 9 2019


A B C M D E

a) Xét \(\Delta ABM\) và \(\Delta ACM\) có :

AB = AC ( gt )

BM = CM ( M là trung điểm BC )

AM : Cạnh chung

=> \(\Delta ABM\) = \(\Delta ACM\) ( c.c.c )

b)  Ta có :  \(\Delta ABM\) = \(\Delta ACM\) ( cmt )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\) ( 2 góc tương ứng )

=> \(\widehat{AMB}\) = \(\widehat{AMC}\)  = \(\frac{\widehat{BMC}}{2}\) = \(\frac {180} 2\) = 90

Hay AM \(\bot\) BC

14 tháng 1 2017

a. tam giac ade va tam giac ace co

ad=ac

de=ce

ae chung

suy ra tam giac ade =tam giac ace(c.c.c)

b. tam giac ade = tam giac ace (chung minh tren)

suy ra goc cae =goc dae(2 goc tuong ung)

tam giac iac va tam giac iad co

ac=ad

goc cai = dai

ai chung

suy ra tam giac iac=iad(c.g.c}

suy ra di=ci

c  sai de bai hay sao ay

21 tháng 6 2017

A B C M N D E

QUA B KẺ BE SONG SONG VỚI NC

TRONG TAM GIÁC AMN CÓ ĐƯỜNG PHÂN GIÁC CỦA GÓC A ĐỒNG THỜI LÀ ĐƯỜNG CAO

=> TAM GIÁC AMN CÂN TẠI A

=> GÓC AMN = GÓC ANM

DO BE SONG SONG VỚI AC

=> GÓC BEM = GÓC ANM

MÀ GÓC ANM = GÓC AMN

=> GÓC AMN = GÓC BEM

=> BE = BM

TA DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC DBE = TAM GIÁC DCN ( G.C.G)

=> BE = CN

=> BM = CN

TA CÓ AM = AN = X

           BM = CN = Y

TA SẼ CÓ :

X + Y = AB = c

X - Y = AC = b

=> X = AM = \(\frac{b+c}{2}\)

=> Y = bm = \(\frac{c-b}{2}\)

( BM CÓ THỂ BẰNG b - c/ 2 phụ thuộc vào  AB VÀ AC)

22 tháng 6 2017

Hình tam giác TenDaGiac1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] của Hình tam giác TenDaGiac1 Đoạn thẳng a: Đoạn thẳng [B, C] của Hình tam giác TenDaGiac1 Đoạn thẳng b: Đoạn thẳng [C, A] của Hình tam giác TenDaGiac1 Đoạn thẳng j: Đoạn thẳng [M, B] Đoạn thẳng k: Đoạn thẳng [M, N] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [B, K] A = (0.24, 5.9) A = (0.24, 5.9) A = (0.24, 5.9) B = (-1.84, 2.22) B = (-1.84, 2.22) B = (-1.84, 2.22) C = (6.84, 2) C = (6.84, 2) C = (6.84, 2) Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm D: Trung điểm của a Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm M: Giao điểm của h, i Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm N: Giao điểm của h, b Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm H: Giao điểm của g, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k Điểm K: Giao điểm của m, k

Bài của Hiếu viết sai tên điểm. Cô trình bày bài này như sau:

Kẻ BK // AC ( K  thuộc MN)

Đặt H là giao điểm của phân giác trong góc A và MN.

Khi đó ta dễ dàng chứng minh được \(\Delta BDK=\Delta CDN\left(g-c-g\right)\Rightarrow BK=CN\left(1\right)\)

Xét tam giác AMN có AH là phân giác đồng thời đường cao nên nó là tam giác cân hay \(\widehat{AMN}=\widehat{ANM}\)

Lại do BK // AC nên \(\widehat{ANM}=\widehat{BKM}\) (đồng vị)

Vậy \(\widehat{AMN}=\widehat{BKM}\) hay tam giác BKM cân tại B. Suy ra BM  = BK (2)

Từ (1) và (2) suy ra BM = CN

Ta thấy AM = AB + BM = c + BM

            AN = AC - NC = b - NC

Cộng từng vế ta có : AM + AN = b + c hay 2AM = b + c

Vậy \(AM=\frac{b+c}{2}\) 

Khi đó MB = AM - AB \(=\frac{b+c}{2}-c=\frac{b-c}{2}\)  ( Với trường hợp b > c và ngược lại)

26 tháng 2 2018

A B C I F E

a) Xét \(\Delta ABI,\Delta ACI\) có :

\(AB=AC\) (ΔABC cân tại A)

\(\widehat{AIB}=\widehat{AIC}\left(=90^o\right)\)

\(\widehat{ABI}=\widehat{ACI}\) (ΔABC cân tại A)

=> \(\Delta ABI=\Delta ACI\) (cạnh huyền - góc nhọn)

=> BI = CI (2 cạnh tương ứng)

=> I là trung điểm của BC.

b) Xét \(\Delta AEI,\Delta AFI\) có :

\(AE=AF\left(gt\right)\)

\(\widehat{EAI}=\widehat{FAI}\) (do \(\Delta ABI=\Delta ACI\) - cm câu a)

\(AI:Chung\)

=> \(\Delta AEI=\Delta AFI\left(c.g.c\right)\)

=> \(IE=IF\) (2 cạnh tương ứng)

=> ΔIEF cân tại I.

c) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{(ΔABC cân tại A)}\right)\\AE=AF\left(gt\right)\end{matrix}\right.\)

Lại có : \(\left\{{}\begin{matrix}E\in AB\\F\in AC\end{matrix}\right.\left(gt\right)\Rightarrow\left\{{}\begin{matrix}AB=AE+BE\\AC=AF+FC\end{matrix}\right.\)

Nên : \(AB-AE=AC-AF\)

\(\Leftrightarrow BE=CF\)

Xét \(\Delta EBI,\Delta FCI\) có :

\(BE=CF\left(cmt\right)\)

\(BI=CI\) (I là trung điểm của BC)

\(IE=IF\) (tam giác IEF cân tại I)

=> \(\Delta EBI=\Delta FCI\left(c.c.c\right)\)

=> đpcm.