K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
3 tháng 5 2020
Từ A kẻ đường phân giác nối A với D⇒∠A1=∠A2
Xét ΔAMD và ΔAND có:
∠A1=∠A2 (cmt)
AD chung
∠AMB=∠AND(=90độ)
⇒ ΔAMD=ΔAND(ch-gn)
⇒ MD=DC (2 cạnh tương ứng)
Xét ΔBMD và ΔCND có:
BD=DC(gt)
∠BMD=∠CND(=90độ)
MD=DN(cmt)
⇒ ΔBMD=ΔCND(ch-cgv)
⇒ MB=NC (2 cạnh tương ứng)
CW
14 tháng 1 2017
a) tam giác ADM = tam giác ADN (cạnh góc vuông _ góc nhọn)
(AD chung ; ADM^ = ADN^ = 90o; BAD^ = NAD^)
=> DM=DN (2 cạnh t/ứng)
Tam giác BDM = tam giác CDN (c.g.c)
(DB = DC ; BDM^ = CDN^ (đđ); DM = DN)
=> BM = CN (2 cạnh t/ứng)
b) AM = c+ BM
AN = b- NC
(hình như câu b là vậy ^^!)
QUA B KẺ BE SONG SONG VỚI NC
TRONG TAM GIÁC AMN CÓ ĐƯỜNG PHÂN GIÁC CỦA GÓC A ĐỒNG THỜI LÀ ĐƯỜNG CAO
=> TAM GIÁC AMN CÂN TẠI A
=> GÓC AMN = GÓC ANM
DO BE SONG SONG VỚI AC
=> GÓC BEM = GÓC ANM
MÀ GÓC ANM = GÓC AMN
=> GÓC AMN = GÓC BEM
=> BE = BM
TA DỄ DÀNG CHỨNG MINH ĐƯỢC TAM GIÁC DBE = TAM GIÁC DCN ( G.C.G)
=> BE = CN
=> BM = CN
TA CÓ AM = AN = X
BM = CN = Y
TA SẼ CÓ :
X + Y = AB = c
X - Y = AC = b
=> X = AM = \(\frac{b+c}{2}\)
=> Y = bm = \(\frac{c-b}{2}\)
( BM CÓ THỂ BẰNG b - c/ 2 phụ thuộc vào AB VÀ AC)
Bài của Hiếu viết sai tên điểm. Cô trình bày bài này như sau:
Kẻ BK // AC ( K thuộc MN)
Đặt H là giao điểm của phân giác trong góc A và MN.
Khi đó ta dễ dàng chứng minh được \(\Delta BDK=\Delta CDN\left(g-c-g\right)\Rightarrow BK=CN\left(1\right)\)
Xét tam giác AMN có AH là phân giác đồng thời đường cao nên nó là tam giác cân hay \(\widehat{AMN}=\widehat{ANM}\)
Lại do BK // AC nên \(\widehat{ANM}=\widehat{BKM}\) (đồng vị)
Vậy \(\widehat{AMN}=\widehat{BKM}\) hay tam giác BKM cân tại B. Suy ra BM = BK (2)
Từ (1) và (2) suy ra BM = CN
Ta thấy AM = AB + BM = c + BM
AN = AC - NC = b - NC
Cộng từng vế ta có : AM + AN = b + c hay 2AM = b + c
Vậy \(AM=\frac{b+c}{2}\)
Khi đó MB = AM - AB \(=\frac{b+c}{2}-c=\frac{b-c}{2}\) ( Với trường hợp b > c và ngược lại)