K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

O A B C 1 2 D 1 1

a) Xét \(\Delta AOC\)\(\Delta BOD\) có :

AO = OB ( gt )

\(\widehat{O_1}=\widehat{O_2}\) ( đối đỉnh )

OC = OD ( gt )

=> \(\Delta AOC\) = \(\Delta BOD\) ( c.g.c)

=> AC = BD ( 2 cạnh tương ứng )

b)

=> \(\widehat{C_1}=\widehat{D_1}\) ( hai góc tương ứng )

=> AC // BD

c)

A B C D O M N N'

Kẻ MO cắt BD tại N'

Ta c/m được \(\Delta MOC=\Delta N'OD\left(g.c.g\right)\)(1)

=> N'D = MC

=> N'B = MA

=> N' trùng M

Mặt khác (1) => MO = ON

=> O là tung điểm của MN

8 tháng 11 2016

Ta có hình vẽ

a/ Xét tam giác AOC và tam giác BOD có

-góc AOC = góc BOD (đối đỉnh)

-AO=OB (vì O là trung điểm của AB)

-CO=OD (Vì O là trung điểm của CD)

Vậy tam giác AOC = tam giác BOD

=> AC = BD (2 cạnh tương ứng)

b/ Xét tam giác AOD và tam giác BOC có

-góc AOD = góc BOC (đối đỉnh)

-AO=OB (vì O là trung điểm của AB)

-CO=OD (Vì O là trung điểm của CD)

Vậy tam giác AOD = tam giác BOC

=> góc DAB = góc ABC

Mà DAB; ABC : so le trong

=> AD//BC

c/ Vì tam giác AOC = tam giác BOD

=> góc OAC = góc OBD (2 góc tương ứng)

Xét tam giác AOM và BON có:

-góc OAC = góc OBD

-AM = BN (GT)

-AO=OB (O là trung điểm của AB)

Vậy tam giác AOM = tam giác BON

=> MO = ON (2 cạnh tương ứng)

Vậy O là trung điểm của MN (đpcm)

15 tháng 2 2018

Xét tam giác ACN có : AD=DN và AO=OC (GT)

=> OD là đường trung bình => OD//CN

Xét tam giác ACM có : AO=OC và AB=BM (GT)

=> OB là đường trung bình => OB//CM

Mà O,B,D thẳng hàng theo gt 

=> M,C,N thẳng hàng ( vì CN//BD và CM//BD ) ( tiên đề ơ cơ lít :D ) 

15 tháng 2 2018

Xét tam giác ACN có : AD=

15 tháng 11 2023

a: Xét ΔOAD và ΔOCB có

OA=OC

\(\widehat{AOD}=\widehat{COB}\)

OD=OB

Do đó: ΔOAD=ΔOCB

=>AD=CB và \(\widehat{OAD}=\widehat{OCB}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AD//BC

b: Xét ΔOAB và ΔOCD có

OA=OC

\(\widehat{AOB}=\widehat{COD}\)

OB=OD

Do đó: ΔOAB=ΔOCD

=>AB=CD

Xét ΔABC và ΔCDA có

AB=CD

BC=DA

AC chung

Do đó: ΔABC=ΔCDA

=>\(\widehat{ABC}=\widehat{CDA}\)

c: Xét ΔOBN và ΔODM có

OB=OD

\(\widehat{OBN}=\widehat{ODM}\)

BN=DM

Do đó: ΔOBN=ΔODM

=>\(\widehat{BON}=\widehat{DOM}\)

mà \(\widehat{DOM}+\widehat{BOM}=180^0\)

nên \(\widehat{BON}+\widehat{BOM}=180^0\)

=>\(\widehat{MON}=90^0\)

=>M,O,N thẳng hàng

d: Xét ΔOAE và ΔOCF có

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

AE=CF\(\left(AE=\dfrac{AD}{2}=\dfrac{BC}{2}=CF\right)\)

Do đó: ΔOAE=ΔOCF

=>\(\widehat{AOE}=\widehat{COF}\)

mà \(\widehat{AOE}+\widehat{EOC}=180^0\)

nên \(\widehat{COF}+\widehat{COE}=180^0\)

=>\(\widehat{FOE}=180^0\)

=>F,O,E thẳng hàng

mà OE=OF

nên O là trung điểm của EF

13 tháng 2 2016

ủng hộ mik nên 30 điểm nha

13 tháng 2 2016

Ủng hộ mình lên 400 nhé