Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) mình khỏi ghi đề lại ha :3
=> 2x^2 - 4x + 2 + 3x^2 + 12x + 12 - 25x^2 + 1= 15
sau đó bạn gom lại những số vd như là 4x với 12x,..... rồi tính ra đc là
-20x^2 + 8x + 15 = 15
=> -20x^2 + 8x = 0
=> 2x ( -10x + 4 ) = 0
=> 2x = 0 => x= 0
hoặc -10x +4 = 0
=> -10x = -4
=> x = 4/ 10
a) ( 2x-3)^ 2 - ( 2x + 5) ^ 2 = 18
=> 4x^2 - 12x + 9 - ( 4x^2 + 20x + 25 ) = 18
=> 4x^2 - 12x + 9 - 4x^2 - 20x - 25 = 18
=> (4x^2- 4x^2) + (-12x - 20x) + ( 9 -25 ) = 18
=> 0 - 32x - 16 = 18
=> -32x = 32
=> x = -1
bạn đợi mình type câu b :v
\(x^4-2x^2+1+x^2+2x+1+2018=\left(x^2-1\right)^2+\left(x+1\right)^2+2018\ge2018\)
Dấu "=" xayr ra <=> \(\hept{\begin{cases}x^2-1=0\\x+1=0\end{cases}\Leftrightarrow x=-1}\)
Kết luận :...
\(A=x-x^2=-x^2+x=-\left(x^2-x\right)=-\left(x^2-x+1-1\right)\)
\(=-\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}+\frac{3}{4}-1\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}-1\right]=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(=\frac{1}{4}-\left(x-\frac{1}{2}\right)^2\le\frac{1}{4}\)
Dấu "=" xảy ra <=> \(\left(x-\frac{1}{2}\right)^2=0< =>x=\frac{1}{2}\)
Vậy MaxA=1/4 khi x=1/2
\(B=-x^2+6x-11=-\left(x^2-6x+11\right)=-\left(x^2-2.x.3+9+2\right)=-\left[\left(x-3\right)^2+2\right]=-2-\left(x-3\right)^2\le-2\)
Dấu "=" xảy ra <=> x-3=0<=>x=3
Vậy maxB=-2 khi x=3