Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Ta đặt giả sử 2 số đó là\(16a\)và\(16b\)
\(16\cdot a\cdot b=192\Leftrightarrow ab=192:16\)
\(\Rightarrow ab=12\)
\(a\cdot b=12\Rightarrow\hept{\begin{cases}a=1;b=12\\a=2;b=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=16;b=192\\a=32;b=96\end{cases}}\)mà\(BCNN\left(32,96\right)=96\Rightarrow\hept{\begin{cases}a=16\\b=192\end{cases}}\)
Nên hai số đó là 16 và 192
Bài 1:
Do $ƯCLN(a,b)=16$ nên đặt $a=16x, b=16y$ với $x,y$ tự nhiên và $x,y$ nguyên tố cùng nhau.
Khi đó:
$a+b=96$
$\Rightarrow 16x+16y=96$
$\Rightarrow x+y=6$
Mà $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,5), (5,1)$
$\Rightarrow (a,b)=(16,80), (80,16)$
Bài 2:
Do $ƯCLN(a,b)=8\Rightarrow$ đặt $a=8x, b=8y$ với $x,y$ là số tự nhiên nguyên tố cùng nhau.
Khi đó:
$ab=8x.8y=384$
$\Rightarrow xy=6$
Do $x,y$ nguyên tố cùng nhau nên $(x,y)=(1,6), (2,3), (3,2), (6,1)$
$\Rightarrow (x,y)=(8,48), (16, 24), (24,16), (48,8)$
YcgwrvyfcsydsRyucrwGurvfeFvReugvvvhcrsfyuwecvyufgpgyfgvadihfewhucycyv
bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho