Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không gian mẫu: n Ω = 6 . 6 = 36
Gọi A là biến cố: ‘‘Tổng số chấm xuất hiện hai lần tung là một số nhỏ hơn 10’’.
⇒ A ¯ : ‘‘Tổng số chấm xuất hiện hai lần tung là một số không nhỏ hơn 10’’.
Tổng số chấm là một số không nhỏ hơn 10 nên số chấm xuất hiện là các cặp:
Chọn B.
Đáp án A.
Số phần tử của không gian mẫu là n Ω = 36 Gọi A là biến cố thỏa yêu cầu bài toán.
Phương trình x 2 + b x + c = 0 có nghiệm khi và chỉ khi
∆ = b 2 - 4 a c ≥ 0 ⇔ b 2 ≥ 4 a c
Xét bảng kết quả sau (L – loại, không thỏa; N – nhận, thỏa yêu cầu đề bài):
|
1 |
2 |
3 |
4 |
5 |
6 |
1 |
L |
N |
N |
N |
N |
N |
2 |
L |
L |
N |
N |
N |
N |
3 |
L |
L |
L |
N |
N |
N |
4 |
L |
L |
L |
N |
N |
N |
5 |
L |
L |
L |
L |
N |
N |
6 |
L |
L |
L |
L |
N |
N |
Dựa vào bảng kết quả trên ta thấy số kết quả thuận lợi cho A là 19.
Vậy xác suất của biến cố A là P ( A ) = 19 36
Chọn B.
Để tích các số chấm xuất hiện ở năm lần gieo là một số tự nhiên có tận cùng bằng 5 thì phải có ít nhất một lần ra mặt 5 chấm và các mặt khác ra mặt lẻ. Do đó xác suất cần tìm bằng
Đáp án A
Phương pháp giải:
Tìm không gian mẫu khi gieo súc sắc và áp dụng quy tắc đếm tìm biến cố
Lời giải:
Tung 1 con súc sắc hai lần liên tiếp => Số phần tử của không gian mẫu là
Gọi x, y lần lượt là số chấm xuất hiện khi tung con súc sắc trong 2 lần liên tiếp.
Theo bài ra, ta có
=>(x;y) = {(1;2), (2;3), (4;5). (5;6)}
Do đó, số kết quả thuận lợi cho biến cố là n = 5. Vậy