K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

+ Số cách chọn 4 người bất kỳ từ nhóm người đó là  

+ Số cách chọn 4 người từ nhóm đó mà không có nữ nào là 

Vậy số cách chọn bốn người từ nhóm đó mà trong đó có ít nhất một nữ là: 330 – 15 = 315.

Chọn C.

18 tháng 5 2017

Tổ hợp - xác suất

17 tháng 3 2018

Trường hợp 1: Chọn 3 nữ, 2 nam  cách chọn

Trường hợp 2: Chọn 4 nữ, 1 nam có   cách chọn

Do đó có  cách chọn.

Chọn B.

28 tháng 12 2018

Chọn 2 trong 15 nam làm tổ trưởng và tổ phó có A 15 2 cách.

 sau khi chọn 2 nam thì còn lại 13 bạn nam. Chọn 3 tổ viên, trong đó có nữ.

+) chọn 1 nữ và 2 nam có  5 . C 13 2 cách.

+) chọn 2 nữ và 1 nam có   13 . C 5 2  cách.

+) chọn 3 nữ có  C 5 3   cách.

Vậy có   A 15 2 ( 5 . C 13 2 + 13 . C 5 2 + C 5 3 ) = 111300  cách.

Chọn D.

9 tháng 2 2018

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

- Chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2

 +) Số cách chọn 2 nam còn lại:  C 13 2

Suy ra có 5 A 15 2 C 13 2  cách chọn cho trường hợp này.

- Chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ: C 5 2  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2 cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  13 A 15 2 C 5 2  cách chọn cho trường hợp này.

- Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  C 5 3  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  A 15 2  cách.

Suy ra có  A 15 2 C 5 2  cách chọn cho trường hợp 3.

Vậy có 5 A 15 2 C 13 2 + 13 A 15 2 . C 5 2 + A 15 2 . C 5 3 = 111300  cách.

Chọn đáp án D.

25 tháng 12 2019

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

 chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  

 +) Số cách chọn 2 nam còn lại:

Suy ra có  cách chọn cho trường hợp này.

 chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ:  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:   cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  cách chọn cho trường hợp này.

 Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  cách.

Suy ra có  cách chọn cho trường hợp 3.

Vậy có  cách.

Chọn D.

30 tháng 6 2017

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

Chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2

 +) Số cách chọn 2 nam còn lại:  C 13 2

Suy ra có 5 A 15 2 . C 13 2  cách chọn cho trường hợp này.

Chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ: C 5 2  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó: A 15 2 cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có 13 A 15 2 . C 5 2  cách chọn cho trường hợp này.

Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ : C 5 3  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó: A 15 2  cách.

Suy ra có A 15 2 . C 5 3  cách chọn cho trường hợp 3.

Vậy có 5 A 15 2 . C 13 2 + 13 A 15 2 . C 5 2 + A 15 2 . C 5 3 = 111300  cách.

Chọn đáp án D

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:  a. Họ ngồi chỗ nào cũng được?  b. Nam ngồi kề nhau, nữ ngồi kề nhau?  c. Nam và nữ ngồi xen kẻ nhau?  d. Có 2 người luôn ngồi cạch nhau?Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách: a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa b. Vào 5 ghế chung quanh một...
Đọc tiếp

Câu 1: Có bao nhiêu cách sắp xếp 5 người khách gồm 3 nam và 2 nữ ngồi vào một hàng 5 ghế nếu:

  a. Họ ngồi chỗ nào cũng được?
  b. Nam ngồi kề nhau, nữ ngồi kề nhau?
  c. Nam và nữ ngồi xen kẻ nhau?
  d. Có 2 người luôn ngồi cạch nhau?
Câu 2: Có bao nhiều cách sắp xếp chỗ ngồi cho 5 người khách:
 a.  Vào 5 ghế xếp thành một dãy sao cho vị khách A luôn ngồi chính giữa
 b. Vào 5 ghế chung quanh một bàn tròm, nếu không có sự phân biệt giữa các ghế này 
Câu 3: Có bao nhiêu cách sắp xếp chỗ ngồi 6 người ngồi vào một dãy 6 ghế hàng ngang nếu:
a. Có 3 người trong số đó muốn ngồi kề nhau
b. Có 2 người trong số đó không muốn ngồi kề nhau
Câu 4: Từ 5 bông vang, 3 bông trắng và 4 bông đỏ( các bông hoa xem như đôi một khác nhau ), ta chọn ra một bó gồm 7 bông:
a. Có bao nhiêu cách chọn ra bó hoa trong đó có đúng một bông đỏ
b. Có bao nhiêu cách chọn ra bó hoa trong đó có ít nhất 3 bông đỏ
c. Có bao nhiêu cách chọn ra bó hoa trong đó có mỗi màu có ít nhất 2 bông

0
12 tháng 5 2018

Chọn B

Số cách chọn một bạn nam và một bạn nữ để hát song ca là C 6 1 . C 4 1   =   24  

24 tháng 9 2021

a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :

\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách: 

\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\)  cách:

Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.

b) Nếu trong \(5\)  học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :

\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.

\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.

Còn lại bn tự lm nha, mỏi tay quá