Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔDFG= ΔCHG(GD=GC;DF=CH;góc FDG=gócHCG)
=>GF=GH(1)
ΔEFB= ΔEHA(FB=HA;EB=EA;gócEAH=gócABF)
=>EF=EH(2)
TỪ 1 và 2=> tứ giác EFGH là hình thoi
+ ta có E là trung điểm của AB => EF là đường trung bình trong tam giác ABC
F là trung điểm của AC
=> EF // BC (1)
+H là trung điểm của BD => HG là đường trung bình trong tam giác BDC
G là trung điểm CD
=> HG//BC(2)
từ (1) và (2) => EF//HG(*)
+ E là trung điểm AB; H là trung điểm BD=> EH là đường trung bình trong tam giác BAD=>EH//AD(3)
+ F là trung điểm của AC; G là trung điểm của CD=> FG là đường trung bình trong tam giác CAD=>FG//AD(4)
từ (3) và (4) => EH//FG(**)
từ (*) và (**) => tứ giác EFGH là hình bình hành ( LÀ HÌNH THOI CƠ BN NHƯNG MK ĐANG BẬN NÊN BN CỐ GẮNG CM TIẾP NHÉ!!!)
Theo định lý tổng bốn góc trong tứ giác, ta có: \(\widehat{E}+\widehat{F}+\widehat{G}+\widehat{H}=360^o\)
Theo đề ra: \(\hept{\begin{cases}\widehat{E}=70^o\\\widehat{F}=80^o\end{cases}\Rightarrow\widehat{G}+\widehat{H}=360^o-70^o-80^o=210^o}\)
Theo đề ra: \(\widehat{G}-\widehat{H}=20^o\Rightarrow\hept{\begin{cases}\widehat{G}=\frac{210^o+20^o}{2}=115^o\\\widehat{H}=115^o-20^o=95^o\end{cases}}\)