K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2018

Đường tròn c: Đường tròn qua B_1 với tâm O Góc α: Góc giữa O, A, P Góc α: Góc giữa O, A, P Góc β: Góc giữa P, B, O Góc β: Góc giữa P, B, O Đoạn thẳng i: Đoạn thẳng [P, C] Đoạn thẳng k: Đoạn thẳng [B, P] Đoạn thẳng l: Đoạn thẳng [P, A] Đoạn thẳng m: Đoạn thẳng [B, C] Đoạn thẳng n: Đoạn thẳng [E, B] Đoạn thẳng p: Đoạn thẳng [O, B] Đoạn thẳng q: Đoạn thẳng [O, A] Đoạn thẳng r: Đoạn thẳng [D, A] Đoạn thẳng s: Đoạn thẳng [A, B] O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) O = (5.16, 0.8) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) P = (0.16, 5.34) Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm A: Giao điểm đường của c, f Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm B: Giao điểm đường của c, g Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm C: Giao điểm đường của c, h Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm D: Giao điểm đường của c, i Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j Điểm E: Giao điểm đường của f, j

a) Do BC // AP nên \(\widehat{EPD}=\widehat{DCB}\)  (Hai góc so le trong)

mà \(\widehat{DCB}=\widehat{EBP}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung BD)

nên \(\widehat{EPD}=\widehat{EPB}\)

Suy ra \(\Delta PED\sim\Delta BEP\left(g-g\right)\)

b) Ta thấy ngay \(\widehat{EAD}=\widehat{EBA}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn cung AD)

Suy ra \(\Delta AED\sim\Delta BEA\left(g-g\right)\)

c) Do \(\Delta PED\sim\Delta BEP\Rightarrow\frac{PE}{BE}=\frac{ED}{PE}\Rightarrow PE^2=ED.EB\)

\(\Delta AED\sim\Delta BEA\Rightarrow\frac{AE}{BE}=\frac{ED}{AE}\Rightarrow AE^2=BE.ED\)

Vậy nên AE = EP

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:a) AP là phân giác của góc BAQb) CP và BR song song với nhau2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax...
Đọc tiếp

1. Cho các đường tròn (O;R) và (O';R') tiếp xúc trong với nhau tại A(R>R'). Vẽ đường kính AB của (O) , AB cắt (O') tại điểm thứ hai C. Từ B vẽ tiếp tuyến BP với đường tròn (O'), BP cắt (O) tại Q. Đường thẳng AP cắt (O) tại điểm thứ hai R. Chứng minh:
a) AP là phân giác của góc BAQ
b) CP và BR song song với nhau

2. Cho đường tròn (O;R) vơi SA là điểm cố định trên đường tròn. Kẻ tiếp tuyến Ax với (O) và lấy M là điểm bất kì thuộc tia Ax. Vẽ tiếp tuyến thứ hai MB với đường tròn (O). gọi I là trung điểm MA, K là giao điểm của BI với (O)
a) Chứng minh các tam giác IKA và IAB đồng dạng. Từ đó suy ra tam giác IKM đồng dạng với tam giác IMB
b) Giả sử MK cắt (O) tại C. Chứng minh BC song song MA

3. Cho tam giác ABC nội tiếp đường tròn (O) và AB<AC. Đường tròn (I) đi qua B và C, tiếp xúc với AB tại B cắt đường thẳng AC tại D. Chứng minh OA và BD vuông góc với nhau.

4.Cho hai đường tròn (O) và (I) cắt nhau tại C và D, trong đó tiếp tuyến chung MN song song với cát tuyến EDF, M và E thuộc (O), N và F thuộc (I), D nằm giữa E và F. Gọi K ,H theo thứ tự là giao điểm của NC,MC và EF. Gọi G là giao điểm của EM ,FN. Chứng minh:
a) Các tam giác GMN và DMN bằng nhau
b) GD là đường trung trực của KH
Làm ơn giúp mình với !!! Chút nữa là mình đi học rồi !!!! Cảm ơn trước !!!

0

a: Xét ΔEAB và ΔEBD có

góc EAB=góc EBD

góc AEB chung

=>ΔEAB đồng dạng với ΔEBD

b: ΔEAB đồng dạng với ΔEBD

=>EB^2=EA*ED

Xét ΔEPD và ΔEAP có

góc EPD=góc EAP

góc PED chung

=>ΔEPD đồng dạng với ΔEAP

=>EP^2=ED*EA=EB^2

=>EP=EB

=>AE là trung tuyến của ΔPAB

21 tháng 5 2018

â) Xét tứ giác PAOB  , co  :

\(\widehat{A}=90^o\) ( PA là tiếp tuyến ) 

\(\widehat{B}=90^o\)( PB là tiếp tuyến ) 

\(\widehat{A}+\widehat{B}=90^o+90^o=180^o\)

Vay : tứ giác PAOB nội tiếp  ( vì có tổng số đo hai góc đối diện bằng 180o )

b)  Xét \(\Delta PAEva\Delta PCA,co:\)

\(\widehat{P}\) là góc chung 

\(\widehat{ACE}=\widehat{EAP}\) ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn một cung  )

Do đó : \(\Delta PAE~\Delta PCA\)( g - g ) 

 \(=>\frac{PA}{PE}=\frac{PC}{PA}\)

\(=>PA^2=PE.PC\)

c)

21 tháng 5 2018

c, ta có góc APC=PCB (slt vì BC//PA)

mà góc PCB=PBE =1/2sđcungBE ( góc nội tiếp chắn cung BE và góc tạo bởi tia tiếp tuyến và dây cung BE)

suy ra góc APC=PBE

xét hai tam giác PIE và BIP có

góc I chung

góc IBE=IBP(cmt)

suy ra hai tam giác đó đồng dạng 

suy ra PI/BI=IE/PI

suy ra PI^2=BI*IE (1)

xét hai tam giác AIE và BIA có 

góc I chung 

góc IAE=ABI=1/2sđ cung AE ( góc nội tiếp chắn cung AE và góc tạo bởi tia tiếp tuyến và dây cung AE)

suy ra hai tam giác đó đồng dạng

suy ra AI/BI=EI/AI

suy ra AI^2=BI*EI (2)

từ 1 và 2 suy ra PI=AI( đpcm)

Xét ΔBAC và ΔBDA có

góc BAC=góc BDA

góc ABC chung

=>ΔBAC đồng dạng với ΔBDA

=>BA/BD=BC/BA

=>BA^2=BD*BC=PB^2

=>BP/BC=BD/BP

=>ΔBPD đồng dạng với ΔBCP

=>góc BPC=góc BDP

=>góc BPC=góc PEF

=>EF//AP

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại Ma) tam giác MAB là tam giác j?b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với...
Đọc tiếp

Bài 1: Điểm C nằm giữa hai điểm A và B. Vẽ đường tròn tâm O, đường kính AB và đường tròn tâm O' đường kính BC. Vẽ tiếp tuyến chung của hai đường tròn tiếp xúc với đường tròn tâm O và tâm O' tại D và E. AD cắt BE tại M
a) tam giác MAB là tam giác j?
b) chứng minh CDME là hình chữ nhật và MC là tiếp tuyến của 2 đường tròn tâm O và tâm O'
c) Kẻ tia Ex vuông góc với EA và tia By vuông góc với BA. Ex cắt By tại N. Chứng minh 3 điểm D,C.N thẳng hàng.
Bài 2: Cho (O) và (O') cắt nhau tại A và B. Tiếp tuyến tại A của (O) cắt (O') tại D. Tiếp tuyến tại A của (O') cắt (O) tại C. Chứng minh rằng:
a) tam giác ABC đồng dạng với tam giác DBA
b) (AC/AD)^2 ( AC trên AD tất cả mũ 2) = BC/BD( AC trên AD tất cả mũ 2 bằng BC/BD)
c) Gọi E là điểm đối xứng của A qua B. Chứng minh ACED là tứ giác nội tiếp.

1
27 tháng 4 2021

Ai giả câu c bài 2 đi ạ khó quá