K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

TC
Thầy Cao Đô
Giáo viên VIP
6 tháng 5 2021

a. 
+ Trong $\Delta ABC$, đường cao $AH$ và $CE$ cắt nhau tại $H$


$\Rightarrow H$ là trực tâm của $\Delta ABC$.


$\Rightarrow BH \perp AC$.


+ Ta có $\widehat{HDB} = 90^{\circ}$ ($AD \perp BC$) và


$\widehat{HEB} = 90^{\circ}$ ($CE \perp AB$)


$\Rightarrow \widehat{HDB} + \widehat{HEB} = 180^{\circ}$.


Mà trong tứ giác $HEBD$, $\widehat{HDB}$ và $\widehat{HEB}$ là hai góc đối nhau.


Suy ra $HEBD$ là tứ giác nội tiếp.


b. 


Xét $\Delta MBA$ và $\Delta MAC$ có:


$\widehat{AMC}$ chung


$\widehat{MAB} = \widehat{MCA}$ (cùng chắn cung $AB$)


$\Rightarrow \Delta MBA \sim \Delta MAC$ (g.g)


$\Rightarrow \dfrac{MB}{MA} = \dfrac{MA}{MC}$ 


$\Rightarrow MA^2 = MB.MC$.


c. 

G E

Kẻ đường kính $AG$ và $AD$ cắt đường tròn tại điểm thứ hai là $E$.

Ta có $\widehat{BCE} = \widehat{BAE}$ (cùng chắn cung BE$)

Mà $\widehat{BAE} = \widehat{DCE}$ (cùng phụ với $\widehat{ABC}$)

$\Rightarrow \widehat{BCE} = \widehat{DCE}$

Xét $\Delta CHD$ và $\Delta CED$ có:

$\widehat{BCE} = \widehat{DCE}$

$CD$ chung

$\widehat{CDH} = \widehat{CDE} = 90^{\circ}$

$\Rightarrow \Delta CHD = \Delta CED$ (g.c.g)

$\Rightarrow \widehat{HCD} = \widehat{ECD}$ hay $CD$ vừa là đường cao, vừa là phân giác của $\Delta CHE$.

$\Rightarrow \Delta CHE$ cân tại $C \Rightarrow CD$ là trung trực của đoạn thẳng $HE$.

Suy ra $NH = NE$ (do $N$ thuộc $CD$) (1)

Chứng minh $CBEG$ là hình thang cân 

Vì $\widehat{AEG} = 90^{\circ}$ nên $AE \perp GE$

Mà $AE \perp BC$ nên $CB // EG$

Suy ra $CBEG$ là hình thang mà hình thang nội tiếp đường tròn $(O)$ nên $CBEG$ là hình thang cân.

$N$ là trung điểm $BC$ nên $\Delta NCG = \Delta NBE$ (c.g.c)

Suy ra $NE = NG$ (2)

Ta có $\widehat{NFG } = 90^{\circ} \Rightarrow NG>NF$ (3) 

Từ (1), (2) và (3) suy ra $NH > NF$.

a: góc MNO+góc MPO=180 độ

=>MNOP nội tiếp

Xét (O) có

MN,MP là tiếp tuyến

=>MN=MP

mà ON=OP

nên OM là trung trực của NP

=>OM vuông góc HP

b: ΔOMN vuông tại N có NH vuông góc OM

=>MH*MO=MN^2

Xét ΔMAN và ΔMNB có

góc MNA=góc MBN

góc M chung

=>ΔMAN đồng dạng với ΔMNB

=>MN^2=MA*MB=MH*MO

=>MA/MH=MO/MB

=>ΔMAH đồng dạng với ΔMOB

=>góc MHA=góc MBO

=>góc MHA=góc BHO

 

=>góc AHN=góc BHN

=>HN là phân giác của góc AHB

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng...
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0
AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Lời giải:
a) Vì $SB, SC$ là tiếp tuyến $(O)$ nên $SB\perp OB, SC\perp OC$ 

$\Rightarrow \widehat{OBS}=\widehat{OCS}=90^0$

Tứ giác $SBOC$ có tổng 2 góc đối nhau $\widehat{OBS}+\widehat{OCS}=90^0+90^0=180^0$ nên $SBOC$ là tứ giác nội tiếp.

b) 

$\widehat{BEC}=\widehat{BFC}=90^0$ và cùng nhìn cạnh $BC$ nên $BFEC$ là tứ giác nội tiếp

$\Rightarrow \widehat{IFB}=\widehat{AFE}=\widehat{ACB}(1)$

Mà:

$\widehat{IBF}=\widehat{IBA}=\widehat{ACB}(2)$ (góc nt tạo bởi tiếp tuyến và dây cung thì bằng góc nội tiếp chắn cung đó)

Từ $(1);(2)\Rightarrow \widehat{IFB}=\widehat{IBF}$

$\Rightarrow \triangle IFB$ cân tại $I$

$\Rightarrow IF=IB$

c) 

$\widehat{FAK}=\widehat{BAO}=\frac{180^0-\widehat{AOB}}{2}=90^0-\widehat{ACB}=\widehat{CAD}(3)$

$\widehat{AFK}=\widehat{AFE}=\widehat{ACB}=\widehat{ACD}(4)$

Từ $(3);(4)\Rightarrow \triangle AFK\sim \triangle ACD$ (g.g)

$\Rightarrow \frac{AF}{AC}=\frac{FK}{CD}(*)$

Mặt khác:

Dễ thấy $\triangle AFE\sim \triangle ACB$ (g.g)

$\Rightarrow \frac{AF}{AC}=\frac{FE}{CB}(**)$

Từ $(*);(**)\Rightarrow \frac{FK}{CD}=\frac{EF}{BC}$

$\Rightarrow FK.BC=EF.CD$ (đpcm)

 

AH
Akai Haruma
Giáo viên
10 tháng 5 2021

Hình vẽ: