Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔKBA và ΔKCB có
góc KBA=góc KCB
góc CKB chung
=>ΔKBA đồng dạng với ΔKCB
=>KB/KC=KA/KB
=>KB^2=KA*KC
b: Xét (O) có
KB,KD là tiép tuyến
nên KB=KD
mà OB=OD
nên OK là trung trực của BD
=>OK vuông góc với BD
Xét ΔOBK vuông tại B có BI là đường cao
nên KI*KO=KB^2=KA*KC
=>KI/KA=KC/KO
=>KI/KC=KA/KO
=>ΔKIA đồng dạng với ΔKCO
=>góc KIA=góc KCO
=>góc AIO+góc ACO=180 độ
=>AIOC là tứ giác nội tiếp
a, A,H,O thẳng hàng vì AH,AO cùng vuông góc với BC
HS tự chứng minh A,B,C,O cùng thuộc đường tròn đường kính OA
b, Ta có K D C ^ = A O D ^ (cùng phụ với góc O B C ^ )
=> ∆KDC:∆COA (g.g) => AC.CD = CK.AO
c, Ta có: M B A ^ = 90 0 - O B M ^ và M B C ^ = 90 0 - O M B ^
Mà O M B ^ = O B M ^ (∆OBM cân) => M B A ^ = M B C ^
=> MB là phân giác A B C ^ . Mặt khác AM là phân giác B A C ^
Từ đó suy ra M là tâm đường tròn nội tiếp tam giác ABC
d, Kẻ CD ∩ AC = P. Chứng minh ∆ACP cân tại A
=> CA = AB = AP => A là trung điểm CK