K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

=>AI là đường trung trực của BC

=>IB=IC

a: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKAO cân tại K

b: Xét ΔOBA vuông tại B có sin BAO=OB/OA=1/2

nên góc BAO=30 độ

=>góc BOA=60 độ

Xét ΔOBI có OB=OI và góc BOI=60 độ

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

15 tháng 7 2018

a,  A B M ^ = A N B ^ = 1 2 s đ B M ⏜

Chứng minh được: ∆ABM:∆ANB (g.g) => ĐPCM

b, Chứng minh AO ^ BC áp dụng hệ thức lượng trong tam giác vuông ABO và sử dụng kết quả câu a) Þ AB2 = AH.AO

c, Chứng minh được  A B I ^ = C B I ^ B I ⏜ = C I ⏜ => BI là phân giác  A B C ^ . Mà AO là tia phân giác  B A C ^ => I là tâm đường tròn nội tiếp ∆ABC

22 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

b: AO là đường trung trực của BC

=>AO\(\perp\)BC tại H và H là trung điểm của BC

Xét (O) có

\(\widehat{ABE}\) là góc tạo bởi tiếp tuyến BA và dây cung BE

\(\widehat{EDB}\) là góc nội tiếp chắn cung BE

Do đó: \(\widehat{ABE}=\widehat{EDB}\)

Xét ΔABE và ΔADB có

\(\widehat{ABE}=\widehat{ADB}\)

\(\widehat{BAE}\) chung

Do đó: ΔABE đồng dạng với ΔADB

=>\(\dfrac{AB}{AD}=\dfrac{AE}{AB}\)

=>\(AB^2=AD\cdot AE\)

c: Xét (O) có

MB,ME là các tiếp tuyến

Do đó: MB=ME

Xét (O) có

NE,NC là các tiếp tuyến

Do đó: NE=NC

Chu vi tam giác AMN là:

\(AM+MN+AN\)

\(=AM+ME+EN+AN\)

\(=AM+MB+AN+NC\)

=AB+AC