K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2019

Gọi số cần lập là 

Vì a khác 1  nên a có 5 cách chọn. Ứng với mỗi cách chọn a ta có:  cách chọn b;c;d.

Vậy có  số .

chọn A.

8 tháng 2 2017

Gọi x  là số có 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 luôn đứng cạnh nhau.

Đặt y=12 khi đó x  có dạng   với a;b;c;d;e đôi một khác nhau và thuộc tập {y;;3;4;5;6} nên có 5!=120 số.

Khi hoán vị hai số 1;2 ta được một số khác nên có 120.2=240 số

Vậy số thỏa yêu cầu bài toán là: 6!-240=480 số.

Chọn B.

16 tháng 6 2018

 Gọi x là số có 6 chữ số đôi một khác nhau và hai chữ số 1 và 2 luôn đứng cạnh nhau.

Đặt y=12  khi đó x có dạng  với a;b;c;d;e đôi một khác nhau và thuộc tập {y;3;4;5;6} nên có

Khi hoán vị hai số1;2 ta được một số khác nên có 120.2=240 số x.

Vậy số thỏa yêu cầu bài toán là: P6 - 240 =480số.

Chọn B.

NV
21 tháng 12 2022

1.

Chữ số hàng đơn vị có 4 cách chọn (từ 1,3,5,7)

Chọn và hoán vị 4 chữ số từ 6 chữ số còn lại: \(A_6^4\) cách

Tổng cộng: \(4.A_6^4\) cách

2.

Gọi chữ số cần lập có dạng \(\overline{abcd}\)

a.

Lập số có 4 chữ số bất kì (các chữ số đôi một khác nhau): \(A_6^4\) cách

Lập số có 4 chữ số sao cho số 0 đứng đầu: \(A_5^3\) cách

\(\Rightarrow A_6^4-A_5^3=300\) số

b.

Để số được lập là số chẵn \(\Rightarrow\) d chẵn

TH1: \(d=0\Rightarrow abc\) có \(A_5^3\) cách chọn

TH2: \(d\ne0\Rightarrow d\) có 2 cách chọn (từ 2;4)

a có 4 cách chọn (khác 0 và d), b có 4 cách chọn, c có 3 cách chọn

\(\Rightarrow2.4.4.3=96\) số

Tổng cộng: \(A_5^3+96=156\) số

Xác suất \(P=\dfrac{156}{300}=...\)

21 tháng 12 2022

cho e hỏi chữ "A" bấm máy sao

23 tháng 2 2017

Đáp án C

Số các số tự nhiên thỏa mãn yêu cầu bài toán là:  A 6   4 =   360 số

13 tháng 7 2019

Đáp án C

Chọn số tự nhiên gồm 4 chữ số trong 6 chữ số có A 6 4   =   360  cách chọn

15 tháng 8 2021

Nguyễn Việt Lâm 

16 tháng 8 2021

Không biết đề là ba số đầu khác 123 hay số đầu tiên khác 1, 2, 3. Đây t làm theo cách hiểu thứ nhất nha.

Theo giả thiết, số cách sắp xếp 3 chữ số đầu tiên là \(A_8^3-1=335\)

Số cách sắp xếp 2 chữ số cuối là \(A_5^2=20\)

\(\Rightarrow\) Có \(335.20=6700\) cách lập số tự nhiên thỏa mãn yêu cầu bài toán.

Không biết đúng không nữa-.-

30 tháng 11 2017

Đáp án D

Phương pháp: Xét từng trường hợp: chữ số đầu tiên bằng 1, chữ số thứ hai bằng 1, chữ số thứ ba bằng 1.

Cách giải: Gọi số đó là  a b c d e

- TH1: a = 1

+ b có 7 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 7.6.5.4 = 840 số

- TH2: b = 1

+ a ≠ b ,   a   ≠ 0 , nên có 6 cách chọn.

+ c có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có: 6.6.5.4 = 720 số.

- TH3: c = 1.

+ a ≠ c ,   a ≠ 0 , nên có 6 cách chọn.

+ b có 6 cách chọn.

+ d có 5 cách chọn.

+ e có 4 cách chọn.

Nên có 6.6.5.4 = 720 số.

Vậy có tất cả 840 + 720 + 720 = 2280 số.

14 tháng 5 2019

Mỗi số cần lập ứng với một chỉnh hợp chập 3 của 6 phần tử

Nên số các số thỏa mãn là:    số.

→Đáp án C.