Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 5 cách chọn chữ số hàng trục nghìn
Có 5 cách chọn chữ số hàng nghìn
Có 5 cách chọn chữ số hàng trăm
Có 5 cách chọn chữ số hàng trục
Có 5 cách chọn chữ số hàng đơn vị
=> Có thể lập được bao nhiêu số tự nhiên có 5 chữ số từ các số đã cho là:
5.5.5.5.5 = 3125 ( số )
TH1: f=0
=>Có 8*7*6*5*4=6720 cách
TH2: f=5
=>Có 7*7*6*5*4=5880 cách
=>Có 6720+5880=12600 cách
Gọi chữ số hàng đơn vị là a
TH1: \(a=0\Rightarrow\) 3 chữ số còn lại có \(A_6^3\) cách chọn và hoán vị
TH2: \(a=5\)
\(\Rightarrow\) Chữ số hàng nghìn có 5 cách chọn (khác 5 và 0), 2 chữ số còn lại có \(A_5^2\) cách
\(\Rightarrow A_6^3+5.A_5^2\) số
\(\overline{abcd}\)
TH1: d=0
=>CÓ 6*5*4=120 cách
TH2: d=5
=>Có 5*5*4=100 cách
=>Có 120+100=220 cách
gọi số cần tìm là abcdef
a có 4 cách chọn
+ với a = { 1,2,3}
b có 5 cách chọn
c có 4 cách chọn
d có 3 cách chọn
e có 2 cách chọn
f có 1 cách chọn
\(\Rightarrow\) có 360 số
+ với a = 4
b có 3 cách chọn
b={ 1,2}
c có 4 cách chọn
d có́ 3 cách chọn
e có 2 cách choṇ
f có 1 cách chọn
b =3
c có 1 cách chọn
d có 3 cách chọn
e có 2 cách chọn
f có 1 cách chọn
\(\Rightarrow\)có 54 số
vậy có 360 + 54 = 414 số
Từ các chữ số A= {0,1,2,3,5,6,8,9} có thể lập được bao nhiêu số tự nhiên khác nhau và nhỏ hơn 526??!
Gọi các số cần tìm có dạng tổng quát là abc
Dựa vào các chữ số, lập được:
a có 3 cách chọn chữ số hàng trăm vì 0<a<5 => a= {1;2;3}
b có 8 cách chọn chữ số hàng chục - tất cả các số trên đều có đủ điều kiện để là c/s hàng chục
c có 8 cách chọn chữ số hàng đơn vị - tất cả các số trên đều có đủ điều kiện để là c/s hàng đơn vị
Bạn lập như thế với các số có dạng 5ab với a<2 và b<6 nhé!
=> Lập được các số để thỏa mãn ycđb là: 3x8x8+?= ? số
_HT_
Gọi số cần lập là \(\overline{abcde}\)
TH1: \(a=1\)
\(\Rightarrow e\) có 4 cách chọn (0;2;4;6)
Bộ bcd có \(A_5^3=60\) cách
\(\Rightarrow4.60=240\) số
TH2: \(a=2\) \(\Rightarrow b< 5\)
- Nếu \(b=\left\{0;4\right\}\) (2 cách) \(\Rightarrow\) e có 1 cách chọn (6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.1.12=24\) số
- Nếu \(b=\left\{1;3\right\}\) (2 cách) \(\Rightarrow\) e có 3 cách chọn (0;4;6)
Bộ cd có \(A_4^2=12\) cách
\(\Rightarrow2.3.12=72\) số
Tổng cộng: \(240+24+72=336\) số
Gọi số cần lập là \(\overline{abcd}\)
TH1: \(a=1\)
\(\Rightarrow\) Bộ bcd có \(A_6^3=120\) số
TH2: \(a=2\Rightarrow b=0\) \(\Rightarrow c=1\)
d có 4 cách chọn \(\Rightarrow4\) số
\(\Rightarrow120+4=124\) số