Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác cân OBC có OK là đường cao nên đồng thời là phân giác.
Vậy thì ^ BOA = ^ COA Suy ra ΔABO=ΔACO(c−g−c)⇒ ^ ACO = ^ ABO =90o
Vậy nên AC là tiếp tuyến của đường tròn (O)
bó tay. com k mk nha!!!
a) MA và MB là hai tiếp tuyến từ M đến (O) nên MA = MB => OM là trung trực của AB
=> OM vuông góc AB (tại K) => ^OKI = ^OHM = 900 => \(\Delta\)OKI ~ \(\Delta\)OHM (g.g)
Vậy OI.OH = OK.OM (đpcm).
b) Áp dụng hệ thức lượng trong tam giác vuông có: OI.OH = OK.OM = OA2 = R2 (Không đổi)
Vì d cố định, O cố định nên khoảng cách từ O tới d không đổi hay OH không đổi
Do vậy \(OI=\frac{R^2}{OH}=const\)=> Đường tròn (OI) cố định
Mà K thuộc (OI) (vì ^OKI nhìn đoạn IO dưới góc 900) nên K di chuyển trên (OI) cố định (đpcm).
Mình không vẽ hình được bạn thông cảm nhé
Gọi K là giao điểm của OM và AB
Xét tam giác MBO vuông có
OK.OM=OB^2=R^2
VÌ H là trung điểm của CD
=> \(OH\perp CD\)
=> tam giác EKO đồng dạng tam giác MHO
=> OH.OE=OK.OM=R^2=OC^2
=> \(\frac{OH}{OC}=\frac{OC}{OE}\)
=> tam giác EHC đồng dạng tam giác ECO
=> ECO=90độ
=> EC là tiếp tuyến của đường tròn
CMTT ED là tiếp tuyến của đường tròn
MÀ C,D cố định
=> E cố định
=> AB đi qua E cố định
Vậy AB luôn đi qua một điểm cố định khi M di chuyển trên d
chịu
k nha