Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\dfrac{5}{3\sqrt{8}}=\dfrac{5\sqrt{2}}{3\cdot4}=\dfrac{5\sqrt{2}}{12}\)
\(\dfrac{2}{\sqrt{b}}=\dfrac{2\sqrt{b}}{b}\)
b: \(\dfrac{5}{5-2\sqrt{3}}=\dfrac{25+10\sqrt{3}}{13}\)
\(\dfrac{2a}{1-\sqrt{a}}=\dfrac{2a\left(1+\sqrt{a}\right)}{1-a}\)
c: \(\dfrac{4}{\sqrt{7}+\sqrt{5}}=\dfrac{4\left(\sqrt{7}-\sqrt{5}\right)}{2}=2\sqrt{7}-2\sqrt{5}\)
\(\dfrac{6a}{2\sqrt{a}-\sqrt{b}}=\dfrac{6a\left(2\sqrt{a}+\sqrt{b}\right)}{4a-b}\)
bài 1 :
Hình :
ta có : \(sin\widehat{BAH}=\dfrac{0,9}{2,43}=\dfrac{10}{27}\Rightarrow\widehat{BAH}\simeq21^o44'\)
\(\Rightarrow\widehat{ABC}=180^o-2\left(21^o44'\right)=136^o32'\)
vậy .....................................................................................................................
bài 2 : \(\dfrac{4}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}}=\dfrac{4\left(1-\sqrt{\sqrt{5}-2}\right)}{\left(3+\sqrt{5}+\sqrt{2+2\sqrt{5}}\right)\left(1-\sqrt{\sqrt{5}-2}\right)}\)
\(=\dfrac{4\left(1-\sqrt{\sqrt{5}-2}\right)}{3+\sqrt{5}+\sqrt{2+2\sqrt{5}}-3\sqrt{\sqrt{5}-2}-\sqrt{5}\sqrt{\sqrt{5}-2}-\sqrt{6-2\sqrt{5}}}\)
\(=\dfrac{4\left(1-\sqrt{\sqrt{5}-2}\right)}{4+\sqrt{2+2\sqrt{5}}-\left(3+\sqrt{5}\right)\sqrt{\sqrt{5}-2}}\) \(=\dfrac{4\left(1-\sqrt{\sqrt{5}-2}\right)}{4+\sqrt{2+2\sqrt{5}}-\sqrt{\left(\sqrt{5}-2\right)\left(14+6\sqrt{5}\right)}}\)\(=\dfrac{4\left(1-\sqrt{\sqrt{5}-2}\right)}{5}=1-\sqrt{\sqrt{5}-2}\)
bài 3 : 1) ta có : \(A=x+3\sqrt{x}-3=x+3\sqrt{x}+\dfrac{9}{4}-\dfrac{21}{4}\)
\(=\left(\sqrt{x}+\dfrac{3}{2}\right)^2-\dfrac{21}{4}\ge\left(\dfrac{3}{2}\right)^2-\dfrac{21}{4}\ge-3\)
dâu "=" xảy ra khi \(x=0\)
2) ta có : \(A=-2x-3\sqrt{x}+2=-2\left(x+\dfrac{3}{2}\sqrt{x}\right)+2\le2\)
dâu "=" xảy ra khi \(x=0\)
3) ta có : \(A=-4x-5\sqrt{x}-3=-4\left(x+\dfrac{5}{4}\sqrt{x}\right)-3\le-3\)
dâu "=" xảy ra khi \(x=0\)
\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}=\dfrac{\left(\sqrt{5}-1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}=\dfrac{5-2\sqrt{5}+1}{5-1}=\dfrac{2\left(3-\sqrt{5}\right)}{4}=\dfrac{3-\sqrt{5}}{2}\)
b: \(\dfrac{37}{7+2\sqrt{3}}=7-2\sqrt{3}\)
c:\(=\dfrac{\sqrt{5}\left(2\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}\left(2\sqrt{2}-\sqrt{5}\right)}=\sqrt{\dfrac{5}{2}}=\dfrac{\sqrt{10}}{2}\)
d: \(=\dfrac{\left(1+\sqrt{a}\right)\cdot\left(2+\sqrt{a}\right)}{4-a}\)
bài 1) a) \(xy\sqrt{\dfrac{x}{y}}=x\sqrt{y}\sqrt{y}\dfrac{\sqrt{x}}{\sqrt{y}}=x\sqrt{x}\sqrt{y}=\left(\sqrt{x}\right)^3\sqrt{y}\)
b) \(\sqrt{\dfrac{5a^3}{49b}}=\dfrac{\sqrt{5a^3}}{\sqrt{49b}}=\dfrac{\sqrt{5a^3}}{7\sqrt{b}}=\dfrac{\sqrt{5a^3}.\sqrt{b}}{7\sqrt{b}.\sqrt{b}}=\dfrac{\sqrt{5a^3b}}{7b}\)
bài 2) a) \(\dfrac{\sqrt{3}-3}{1-\sqrt{3}}=\dfrac{\sqrt{3}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}=\sqrt{3}\)
b) \(\dfrac{5-\sqrt{15}}{\sqrt{3}-\sqrt{5}}=\dfrac{-\sqrt{5}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}-\sqrt{5}}=-\sqrt{5}\)
c) \(\dfrac{2\sqrt{2}+2}{5\sqrt{2}}=\dfrac{\sqrt{2}\left(2+\sqrt{2}\right)}{5\sqrt{2}}=\dfrac{2+\sqrt{2}}{5}\)
Bài 1:
\(a\)) \(4\) và \(\sqrt{15}\)
Vì \(16>15\) nên \(\sqrt{16}>\sqrt{15}\)
\(\Rightarrow4>\sqrt{15}\)
\(b\)) \(5\) và \(\sqrt{2}+\sqrt{5}\)
Ta có: \(\left(\sqrt{2}+\sqrt{5}\right)^2=2+2\sqrt{10}+5=2\sqrt{10}+7\)
\(5^2=25\)
Suy ra: \(\left(\sqrt{2}+\sqrt{5}\right)^2-5^2=2\sqrt{10}+7-25\)
\(=2\sqrt{10}-18\)
\(=\sqrt{40}-\sqrt{324}< 0\)
Vậy \(5>\sqrt{2}+\sqrt{5}\)
a: \(=\sqrt{\left(2-a\right)^2\cdot\dfrac{2a}{a-2}}=\sqrt{2a\left(a-2\right)}\)
b: \(=\sqrt{\left(x-5\right)^2\cdot\dfrac{x}{\left(5-x\right)\left(5+x\right)}}\)
\(=\sqrt{\left(x-5\right)\cdot\dfrac{x}{x+5}}\)
c: \(=\sqrt{\left(a-b\right)^2\cdot\dfrac{3a}{\left(b-a\right)\left(b+a\right)}}=\sqrt{\dfrac{3a\left(b-a\right)}{b+a}}\)
a: \(\dfrac{6}{5\sqrt{8}}=\dfrac{6}{10\sqrt{2}}=\dfrac{3}{5\sqrt{2}}=\dfrac{3\sqrt{2}}{10}\)
b: \(\dfrac{7}{5+2\sqrt{3}}=\dfrac{7\left(5-2\sqrt{3}\right)}{13}\)
c: \(\dfrac{6}{\sqrt{7}-\sqrt{5}}=\dfrac{6\left(\sqrt{7}+\sqrt{5}\right)}{2}=3\left(\sqrt{7}+\sqrt{5}\right)\)
a) \(\dfrac{6}{5\sqrt{8}}\)
\(=\dfrac{6}{5\cdot2\sqrt{2}}\)
\(=\dfrac{6}{10\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{5\sqrt{2}\cdot\sqrt{2}}\)
\(=\dfrac{3\sqrt{2}}{10}\)
b) \(\dfrac{7}{5+2\sqrt{3}}\)
\(=\dfrac{7\left(5-2\sqrt{3}\right)}{\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)}\)
\(=\dfrac{7\left(5-2\sqrt{3}\right)}{5^2-\left(2\sqrt{3}\right)^2}\)
\(=\dfrac{7\left(5-2\sqrt{3}\right)}{13}\)
\(=\dfrac{35-14\sqrt{3}}{13}\)
c) \(\dfrac{6}{\sqrt{7}-\sqrt{5}}\)
\(=\dfrac{6\left(\sqrt{7}+\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)
\(=\dfrac{6\left(\sqrt{7}+\sqrt{5}\right)}{2}\)
\(=3\sqrt{7}+3\sqrt{5}\)
tth_newrì lí.-. thế lm Toán giỏi phết.Toàn cho mấy bài toán hack não không.Để tìm lại cái não đã bị hack r
Mấy cái căn kiêng này mk chịu
Mk chẳng chịu trả lời tí đâu
Nếu buồn rầu ko ai đáp lại
Thì tốt nhất hỏi bài thầy đi
Ahihi...
Bài 1:
a: \(\dfrac{2-\sqrt{3}}{3\sqrt{6}}=\dfrac{2\sqrt{6}-3\sqrt{2}}{18}\)
b: \(\dfrac{1}{\sqrt{2}+\sqrt{3}}=\sqrt{3}-\sqrt{2}\)
c: \(\dfrac{1}{2\sqrt{2}-3\sqrt{3}}=\dfrac{2\sqrt{2}+3\sqrt{3}}{8-27}=\dfrac{-2\sqrt{2}-3\sqrt{3}}{19}\)
d: \(\dfrac{2\sqrt{10}-5}{4-\sqrt{10}}=\dfrac{\sqrt{10}}{2}\)
e: \(\dfrac{37}{7+2\sqrt{3}}=7-2\sqrt{3}\)