Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Gọi A là biến cố “Cú sút đó không vào lưới”. Nếu cầu thủ sút vào vị trí 1 hoặc 2, xác suất để bóng không vào bằng 2 . 1 4 . 1 4 = 1 8 . Nếu cầu thủ sút cào vị trí 3 hoặc 4, xác suất để bóng không vào bằng 2 . 1 4 . 1 4 . 1 2 = 1 16 . Suy ra xác suất để bóng không vào bằng P ( A ) = 1 8 + 1 16 = 3 16 .
Những trận đấu giữa Real Madrid và Barcelona luôn rất rất căng thẳng và đỉnh điểm chính là trong giai đoạn 1953-1966 và 2010-2013
Gọi A là biến cố cầu thủ thứ nhất ghi bàn
B là biến cố cầu thủ thứ hai ghi bàn
X là biến cố ít nhất 1 trong hai cầu thủ ghi bàn
Suy ra: X ¯ = A ¯ . B ¯
Vì hai biến cố A ¯ ; B ¯ độc lập với nhau nên ta có:
P ( X ¯ ) = P ( A ¯ ) . P ( B ¯ ) = ( 1 − 0 , 8 ) . ( 1 − 0 , 7 ) = 0 , 06
Do đó, xác suất để có ít nhất 1 trong hai cầu thủ ghi bàn là:
P ( X ) = 1 − P ( X ¯ ) = 1 − 0 , 06 = 0 , 94
Chọn đáp án B
Chọn A
Có cách chia 20 bạn vào 4 nhóm, mỗi nhóm 5 bạn.
- Gọi A là biến cố “ 5 bạn nữ vào cùng một nhóm”
- Xét 5 bạn nữ thuộc nhóm A có cách chia các bạn nam vào các nhóm còn lại.
- Do vai trò các nhóm như nhau nên có
Khi đó .
Không gian mẫu là kết quả của việc sắp xếp 10 người theo 1 thứ tự.
⇒ n(Ω) = P10 = 10! = 3 628 800.
a) Gọi M: “A và B đứng liền nhau”
* Coi A và B là một phần tử X.
Số cách xếp X và 8 người khác thành hàng dọc là: 9!
Số cách xếp hai người A và B là: 2!= 2 cách
Theo quy tắc nhân có: 9!.2= 725760 cách xếp thỏa mãn
Xác suất của biến cố M là:
b) Gọi N: “Trong hai người đó có một người đứng ở vị trí số 1 và một người kia đứng ở vị trí cuối cùng”.
+ Sắp xếp vị trí cho A và B: Có 2 cách
+ Sắp xếp vị trí cho 8 người còn lại: có 8! cách
⇒ Theo quy tắc nhân: n(N) = 2.8!
Đáp án B.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là:
Xác suất để xạ thủ thứ hai bắn không trúng bia là:
Gọi biến cố A:Có ít nhất một xạ thủ không bắn trúng bia. Khi có biến cố A có 3 khả năng xảy ra:
* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là
* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là .
* Xác suất cả hai người đều bắn không trúng bia là .
Vậy .
Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia”, i=1,2
TH1. Xạ thủ thứ nhất bắn trúng, xạ thủ 2 bắn trượt thì xác suất là:
P A 1 = 1 2 . 1 − 1 3
TH2. Xạ thủ thứ nhất bắn trượt, xạ thủ thứ 2 bắn trúng thì xác suất là:
P A 2 = 1 − 1 2 . 1 3
TH3. Cả 2 xạ thủ đều bắn trượt
P A 3 = 1 − 1 2 . 1 − 1 3
Xác suất của biến cố Y là:
P Y = P A 1 + P A 2 + P A 3 = 5 6
Đáp án. D
Gọi \(A_i\) là biến cố cầu thủ sút vào vị trí \(i\) và \(B_i\) là biến cố thủ môn bay người tới vị trí \(i\)
Do 4 vị trí như nhau nên \(P\left(A_i\right)=P\left(B_i\right)=\dfrac{1}{4}\) với mọi i từ 1 tới 4
Xác suất cầu thủ ko sút vào là:
\(P=P\left(A_1\right).P\left(B_1\right)+P\left(A_2\right).P\left(B_2\right)+\dfrac{1}{2}P\left(A_3\right).P\left(B_3\right)+\dfrac{1}{2}P\left(A_4\right).P\left(B_4\right)\)
\(=\dfrac{1}{4}.\dfrac{1}{4}+\dfrac{1}{4}.\dfrac{1}{4}+\dfrac{1}{2}.\dfrac{1}{4}.\dfrac{1}{4}+\dfrac{1}{2}\dfrac{1}{4}.\dfrac{1}{4}=\dfrac{3}{16}\)