Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp: Coi sự giao thoa trùng vân giống như giao thoa ánh sáng đơn sắc, ta đi tìm khoảng vân trùng nhau.
Cách giải:
Vị trí vân sáng và vân tối thỏa mãn điều kiện :
Vì vân sáng trùng với vị trí vân tối nên ta có:
Coi đây là hiện tượng giao thoa với khoảng vân trùng nhau là:
Số vân trùng nhau trong khoảng MN thỏa mãn điều kiện :
Vậy có 15 giá trị k thỏa mãn
Đáp án B
Cách 1:
Dùng chức năng lập bảng của máy tính (MODE7 TABLE)
+ Tìm hàm biến này theo biến kia k2 theo biến k1 qua điều kiện trùng nhau:
Bấm = nhập giá trị của k1 theo phương trình (2)
Start? Nhập 3
End? Nhập 19
Step? Nhập 1 (vì giá trị k1, k2 nguyên)
Bấm = ta được bảng giá trị k1,k2 ta lấy các cặp giá trị nguyên.
STT |
x = k 1 |
( f x ) = k 2 |
1 |
… |
… |
… |
… |
… |
|
6 |
7 |
|
10 |
12 |
|
14 |
17 |
|
18 |
22 |
|
|
|
Đáp án C
+ Điều kiện để có sự trùng nhau của hai hệ vân sáng
.
Xét tỉ số
có 3 vân trùng.
Đáp án A
Tổng số vân sáng mà hai hệ vân cho được là 33 + 5 = 38
+ Số vân sáng của bức xạ λ 1 cho trên màn
Vậy số vân sáng của bức xạ λ 2 trên màn sẽ là 38 – 21 = 17
→ Tại vị trí biên vân sáng bậc 10 của bức xạ λ 1 trùng với vân sáng bậc 8 của bức xạ λ 2
Đáp án D
Xét tỉ số: => Vân sáng bậc 5 của bức xạ 1 trùng với vân sáng bậc 6 của bức xạ 2.
Khoảng cách nhỏ nhất giữa hai vân sáng quan sát được trên màn được tính bởi
+ Khi vân sang của bức xạ λ 1 trùng với vân tối của bức xạ λ 2
k 1 k 2 + 0 , 5 = λ 2 λ 1 = 2 2 , 5 = 6 7 , 5 = ...
i 2 = λ 2 D a = 0 , 75 m m
+ Trên đoạn MN có 4 vị trí vân sáng của bức xạ λ 1 trùng với vân tối của bức xạ λ 2